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Abstract
The problem of obtaining models describing the dynamics of a certain system is current
across many industries. The model can be created from the physical principles of the system,
this approach however requires a developed theory of the underlying system. An alternative
approach is model identification from measured data, which is often the only viable approach
for complex systems without a developed theory. In this paper, I apply a method called Sparse
Identification of Nonlinear Dynamics (SINDy), which utilizes both approaches, identification
from data using at least some limited knowledge of the system. The method will be used
to identify a nonlinear model of a pendulum-cart system from data with additive noise. The
paper also describes methods for filtering and numerical differentiation of the measured signals
and a new method for model selection for sparse models.

Key-words: Machine learning; system identification; sparse regression; dynamical systems;
numerical differentiation; spectral methods

1. Introduction

The problem of discovering mathematical models describing real-world phenomena is relevant
since the start of the scientific revolution. Having the ability to quantitatively describe reality
opens new opportunities in both engineering and sciences. This paper focuses on dynamical
models, which are mathematical models that describe the behaviour of a system in time.
The model discovery process is about identifying and describing patterns in the measurements.
Traditionally, this relied heavily on expert knowledge and intuition. An expert had to notice the
patterns, be able to reduce them into mathematical form and create the mathematical model
describing the observations. The emergence of computers, increasing computational power,
and advances in machine learning enable an alternative approach. Many machine learning
methods, such as neural networks, are capable of describing dynamical systems purely from
data. These models are however difficult to interpret (black box models), and they often don’t
respect physical constraints on the model dynamics. These issues justify the recent interest in
physics-informed machine learning, which combines expert knowledge of physics and machine
learning.
The identified model then has to be evaluated. According to the philosophy of Occam’s razor,
also known as the law of parsimony, a good model should be as simple as is necessary to ac-
curately describe the observations. The mathematical model should also be able to generalize
to data that haven’t been seen during the model creation process. Physics-informed machine
learning constrains the space of possible models, which prevents overfitting and therefore pro-
motes the model’s generalization capability.

2. Sparse Identification of Nonlinear Dynamics

Sparse Identification of Nonlinear Dynamics [1], or SINDy, is a method that utilizes both expert
knowledge and machine learning. The expert’s input is in reducing the space of possible models
by picking a set of functions that might describe the real system dynamics. Sparsity-promoting
regression is then used to create models from measurement data. By promoting sparsity, the
functions that turn out to not be relevant in the underlying dynamics will be completely omitted
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in the final model. Sparsity therefore means that the final model contains as few functions as
possible. This follows the law of parsimony, which in the context of mathematical models means
that we should value the simplicity of our models as well as their accuracy.

2.1. Regression for dynamical systems

2.1.1. General formulation

Dynamical systems are described by a system of ordinary differential equations (ODEs). Sys-
tems of ODEs are generally described by

ẋ(t) = f(x(t)) + g(x(t),u(t)). (1)

The vector x(t) ∈ Rd, where d is the number of state variables, defines the state of the system
at time t. The vector function f describes the effect of natural dynamics at time t. The external
input vector u(t) ∈ Rb, where b is the number of external inputs, and g is the vector function
describing the effect of external forcing on the system. Note that g is a function of both state
and input, as an input might have different effect on the system depending on its current state.

2.1.2. Matrix-vector formulation

For the SINDy [1] algorithm to be directly applicable, every single ODE ẋi from ẋ = [x1, . . . , xd]
T

must be expressible as a linear combination of functions of x and u

ẋi(t) = ξ1θ1(x(t),u(t)) + . . .+ ξmθm(x(t),u(t)) (2)

where ξ are scalar parameters and m is the total number of candidate functions. Simplifying
the notation so that θi(t) = θi(x(t),u(t)), the equation (1) can be formulated in vector notation
as

ẋ(t) = [θ1(t) . . . θm(t)]

 ξ1...
ξm

 = Θξ (3)

where the matrix Θ is the set of candidate functions and the vector ξ is the vector of coefficients
of those functions. The regression task is therefore to find a vector of coefficients ξ that
represents ẋi using functions from Θ.
Because the continuous functions θ(t) are only an abstraction that cannot be worked with
numerically, we must approximate them with a finite number of measurements θ[k], where
k is the time-sample index. Note that θ[k] are vectors of measurements, so they’re far from
a perfect substitute for the actual functions θ(t). Whether measurements θ[k] represent the
underlying function θ(t) well doesn’t depend only on the sampling frequency or the number
of samples, but also on the way they’ve been generated. If, for example, we had a function
θ(t) = x1 sin(x2) + 1, but the state variable x2 was kept constant at 0 during the experiment,
then the set of measurements θ[k] would be a terrible representative of θ(t), because it wouldn’t
describe the effects of any of its variables x1 and x2.
The approximation of (3) therefore has the form

ẋi[k] =

[ | . . . |
θ1[k] . . . θm[k]
| . . . |

] ξ1...
ξm

 = Θ(X,U) ξ. (4)

Θ(X,U) ∈ RN×m is called the function library, it has m columns representing the candidate
functions, and N rows representing time-samples. The columns θi[k] representing the candidate
functions are computed from state measurements X and input measurements U. The state
derivative measurements Ẋ must be computed from the state measurements X numerically,
using for example spectral differentiation described later in this paper.
The original paper [1] didn’t mention identification of systems with external inputs u as in the
case above. Another paper was released shortly after, where an extension named SINDYc [2]
included the control input u in the function library. The extension essentially doesn’t make a
distinction between the inputs u and states x, they can be treated equally with no extra cost.
The inputs u will not appear in the equations later in the paper, since adding them is trivial.
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2.2. Sparse regression

2.2.1. Description

The equation (4) represents the general regression problem

Ax = b. (5)

The objective is to find a solution vector x (not to be confused with the state vector x), or ξ in
the ODE formulation. There are many algorithms for solving this problem, many of them put
some constraints on the solution x. Following the law of parsimony, we want to find a solution
x that is sparse, meaning it has as few non-zero elements as possible. Note that when a solution
coefficient ξi is 0, its respective candidate function θi(t) isn’t present in the final model.

2.2.2. Sequentially thresholded least squares

The sequentially thresholded least squares (STLS) algorithm used in the original SINDy [1]
paper uses standard least-squares regression

arg min
x
‖Ax− b‖2 (6)

and then sets all elements x ∈ x that are below a defined hyperparameter threshold λ to 0.
These two steps are then repeated multiple times until the solution x no longer changes between
iterations. In the ODE formulation (4), the algorithm sequentially reduces the number of
considered candidate functions θ. On the first iteration, it works with the full function library
Θ ∈ RN×m and produces a non-sparse solution ξ, whose elements ξi which are below the
threshold λ are set to 0. If an element ξi is set to 0, its respective candidate function θi is dropped
from Θ and won’t be considered in the next iterations. The number of candidate functions
usually drops significantly after the first iteration. The condition number κ, representing the
well-posedness of the regression problem, is defined as a ratio of the biggest and the smallest
singular value

κ =
maxσ(Θ)

minσ(Θ)
(7)

The condition number κ, is very high at the first iteration, meaning the problem is ill-posed
and the solution isn’t reliable. In the later iterations, as columns of Θ are dropped, κ also
usually decreases to acceptable values. The STLS method produces sparse solutions x while
preserving the numerical robustness and low time complexity of least-squares algorithms.

2.2.3. Sequentially energy thresholded least squares

The STLS algorithm sequentially drops candidate functions θi based on their respective param-
eter values ξi under the assumption that low values of ξi indicate that the respective candidate
function θi has a small effect on the target variable. However, when working with unnormalized
measurements θ[k], this isn’t necessarily true. Interpreting the measurements θ[k] as signals,
a high energy signal θi[k] with a low coefficient ξi might have a higher effect than another
signal θj[k] with a relatively higher coefficient ξj. To deal with this issue, I modified the STLS
algorithm so that the thresholding is done based on the signal’s total implied energy, defined
for every candidate function and parameter vector (θ[k], ξ) pair as

E(ξ, θ[k]) =
N−1∑
k=0

(ξ θk)2. (8)

This energy E is calculated for every candidate function present in the function library, the
highest energy max{E(ξ, θ[k])} then becomes a baseline from which the threshold λ is calculated
as

λ = max{E(ξ, θ[k])} · λR (9)
where λR is a hyperparameter setting the relative energy ratio between the lowest acceptable
energy signal and the maximum energy signal. The candidate functions θ whose implied energies
are lower than λ are then dropped from Θ and their respective coefficients ξ set to 0.
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2.3. Implicit SINDy

According to the equation (1), the standard SINDy method cannot be used if the dynamical
system is described by a rational function in the general form

ẋ(t) =
f(x(t))

h(x(t))
. (10)

In this case, the dynamics cannot be reduced into a linear combination of functions as before in
(2). An extension called implicit-SINDy [3] can deal with this problem. The system of ODEs
is transformed into an implicit form by multiplying both sides by the function h

ẋ(t) h(x(t)) = f(x(t)) (11a)

0 = f(x(t))− ẋ(t) h(x(t)) (11b)
For a single ODE ẋi from ẋ, the equation (10) can again be simplified by using a single

symbol θ for all right-hand side functions f , ẋ and h.

0(t) = ξ1θ1(x(t)) + . . .+ ξmθm(x(t)) (12)

In this formulation, the equation can be again transformed into matrix-vector notation as

0(t) = [θ1(t) . . . θm(t)]

 ξ1...
ξm

 = Θ(X, Ẋ)ξ (13)

One issue now is that our target function ẋ, which we want to model, now has to be em-
bedded within the function library Θ(X, Ẋ). This means that even if we had the solution
ξ, it wouldn’t be as trivial to reconstruct ẋ as before, where we simply had to multiply each
candidate function by its coefficient and sum the functions. The reconstruction step essentially
requires doing the step equations (10), (11a) and (11b) in reverse and the specific operations
depend on the chosen structure of the candidate functions. In practice, this can be automated
using symbolic math software, in the case of this paper using the SymPy [4] package for Python.
Another problem is that the standard regression problem Ax = b changed into the homoge-
neous problem

Ax = 0. (14)
The algorithms for solving (14) aren’t as robust as for the more general problem (5). The
existing methods are very sensitive to noise, making this extension by itself unpractical for
real-world applications, where measurement noise is unavoidable.

2.4. Parallel implicit SINDy

Another extension, called SINDy-PI [5], deals with the high sensitivity of implicit-SINDy by
picking one of the columns θi from Θ(X, Ẋ) and moving it to the left-hand side, effectively
transforming the problem back into the more general Ax = b formulation. If the chosen
candidate function θi is in the real target dynamics, the solution ξ will be sparse and the model
it generates will likely be accurate. The problem (13) is transformed, using a guess θi, into

θi[k] =



θ1[k]
...

θi−1[k]
θi+1[k]

...
θm[k]



T 

ξ1
...

ξi−1

ξi+1
...
ξm

 = Θi(X, Ẋ) ξi (15)

where Θi(X, Ẋ) is the function library without the i-th function (column) and ξi is the solution
vector without the i-th coefficient.
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The problem (15) is solved for many different left-hand side guess functions θi, with different
hyperparameter values λR for each run. This generates a very large number of models, and
requires techniques to sort through them to pick the best ones. When selecting the models, I
utilize the fact that when the real model contains some different candidate functions θi, θj, θk,
then it will likely be identified whenever one of those functions acts as the left-hand side guess.
A model that appears consistently therefore is likely to be correct.
Because the method relies on guessing and has to generate a lot of models, it’s significantly
more computationally difficult. However, the identification method is highly parallelizable,
since each model can be identified separately. This high parallelization capability is why the
method is called Parallel Implicit.

3. Data preprocessing

The SINDy method requires measurement data to identify the dynamics. The dynamics of every
generalized coordinate in a mechanical dynamical system are, as a consequence of Newton’s
second law, descibed by second-order ODEs. When described in the state-space representation,
this leads to two state-space variables for generalized coordinate, one for its current value, one
for its rate of change. In this paper, I’ll assume that we’re measuring only the value of the
generalized coordinate. The goal of modeling is to find a model for the acceleration. In other
words, the acceleration is the target variable. To train the models, we need to estimate these
target variables from data. Both velocities and accelerations can be obtained from position
measurements using numerical differentiation.

3.1. Spectral differentiation

Spectral differentiation uses the properties of Fourier transforms to compute derivative esti-
mates from measured data [6]. Because we’re working with discrete signals and Fourier trans-
forms are a just a mathematical abstraction, we must use Discrete Fourier Transforms (DFTs)
instead. DFTs are usually computed using the Fast Fourier Transform (FFT) algorithm, be-
cause of its low time complexity.
Assuming a measured discrete signal x[k], its representation in the frequency domain is

x̂[v] = DFT{x[k]}, (16)

where v is known as the wavenumber. The frequency (in rad
s
) ω can be computed from v as

ω[v] =
2π v

∆t
(17)

where ∆t is the sampling period. The convenient property of Fourier transforms is that

F{ẋ(t)} = iωx̂(ω), (18)

meaning the Fourier transform of the function derivative in the time domain is equal to the
function itself in the frequency domain multiplied by iω. Using this property, we can estimate
the time-derivative of x[k] as

DFT{ẋ[k]} = iωx̂[ω], (19)
which can be transformed back into the time domain using inverse-DFT

ẋ[k] = iDFT{iωx̂[ω]}, (20)

where ẋ[k] is the estimate of the function derivative.
Notice that the property 18 implies that the time-derivative of x is the function itself in the
frequency domain passed through a high-pass filter defined by i ω. When our signals are mea-
surements of some physical process, the signal itself has most of its energy in the lower frequen-
cies, while (white) noise has the same energy at all frequencies. This unfortunately means that
numerical differentiation decreases the signal-to-noise ratio, which raises requirements on low
sensor noise and filtering methods.
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3.2. Spectral filtering

An ideal filter has a gain of 1 in the specified frequency range and a gain of 0 outside the
range. Traditional filters cannot meet these demands. Spectral filtering techniques use the
FFT to calculate the signal’s representation in the frequency domain. When we have this
representation, we can simply set all the high-frequency coefficients to 0 and then use inverse-
FFT to reconstruct the signal in the time domain. Mathematically, setting frequencies outside
some defined range is equivalent to multiplying the frequency-domain signal with a square
function fsq(ω).

x̂[ω] = DFT{x[k]} (21a)

x̂f [ω] = fsq(ω) x̂[ω] fsq(ω) =

{
1, if ω ≤ ωcutoff .
0, if ω > 0.

(21b)

xf [x] = iDFT{xf [ω]} (21c)
When designing filters, the most important design choice is the cutoff frequency. If it’s set too
low, then we filter out useful information from the signal, but if it’s set too high, we don’t get
rid of the noise. In this thesis, I choose the cutoff frequency based on the signal’s periodogram,
which is an estimate of the power spectrum density (PSD).
Any signal can be interpreted as a sum of information and noise. Information is the part of the
signal that is generated by the process we intend to actually measure. Noise is the part of the
signal that’s generated by other processes. Many processses of interest generate information
signals that are mostly dispersed in the lower frequencies, or in other words, have a relatively
small bandwidth. The noise, on the other hand, typically has a far bigger bandwidth. Noise
is often (mathematically) modeled as a white noise. White noise, by definition, has infinite
bandwidth and a constant power spectrum density. In practice, the noise isn’t as “flat” in the
power spectrum as an ideal white noise. Instead, it’s distributed with some variance around
some mean power value. I choose the cutoff frequency automatically from the periodogram,
assuming the noise component of the signal is distributed evenly in the power spectrum. I
calculate the noise ceiling,the power that should be higher than than noise’s power at most
frequencies, by calculating the mean power µ and standard deviation σ of the 50% highest
frequency components in the signal. The noise ceiling is then defined as µ + zσ, where z is a
manually set parameter.
Then I smoothed the periodogram using a simple moving average filter and find the lowest
frequency at which the measurement signal crosses below the previously calculated noise ceiling.
If the signal is intended to be used for numerical differentiation, it should be “over-filtered”,
meaning the cutoff frequency should be set much lower than the frequency at which the noise
ceiling is reached. By defining the cutoff frequency as the frequency at which the noise becomes
more powerful than the signal, the high frequency components of the filtered signal would have
a signal-to-noise ratio of roughly 1. For numerical differentiation, this isn’t good, because it
acts as a high-pass filter, and these low SNR high frequencies would therefore throw off the
derivative estimates.
The filter settings from the periodograms are shown in the Figure 1. In the first one x1, the
cutoff frequency is set as the frequency at which the periodogram crosses the threshold (noise
ceiling). In the second one, the cutoff frequency is manually offset to the lower frequencies to
over-filter the signal for numerical differentiation.
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Fig. 1. Cutoff frequency set at the noise ceiling vs. cutoff frequency set before the noise ceiling - “overfiltering”.
The threshold represents the noise ceiling, a power value that should be above all noise component power values.

4. Identification of a pendulum-cart model

4.1. Analytical model and simulation

I’m using the SINDy method to identify the nonlinear dynamical model describing the dynamics
of a pendulum mounted on a moving cart. The input u into the system is a force acting on the
cart. The position of the cart is given by the first state variable x1, and the pendulum angle
is given by x2. The other two state variables, x3 and x4, are the cart velocity and pendulum
angular velocity respectively.
I derived an analytical model of the system using Euler-Lagrangian mechanics according to the
paper [7]. The model also contains non-conservative friction forces for both the cart and the
pendulum. The friction force is a function of velocity in both cases. The cart acceleration and
the angular acceleration of the pendulum are given by ẍ3 and ẍ4 respectively. These are our
target variables, which we want to predict using the state variables and inputs and functions
derived from them. The analytical (reference) model is used for simulations that generate data,
the objective is to reconstruct the reference model from that data. The two second order ODEs
describing the dynamical system are

ẋ3 =
A(x, u)

B(x, u)
(22a)

A(x, u) = I1 u(t) + a1
2m1 u(t)− I1 bc x3(t) + +a1

3m1
2 sin(x2(t))x

2
4(t)+

−a12 bcm1 x3(t) + +a1 b1m1 cos(x2(t))x4(t) + +a1
2 g m1

2 cos(x2(t)) sin(x2(t))+

+ I1 a1m1 sin(x2(t))x
2
4(t)

(22b)

B(x, u) = −a12m1
2 cos2(x2(t)) + +a1

2m1
2 +mc a1

2m1 + I1m1 + I1mc (22c)
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ẋ4 =
C(x, u)

D(x, u)
(23a)

C(x, u) = b1m1 x4(t) + b1mc x4(t) + +a1 g m1
2 sin(x2(t)) + a1m1 cos(x2(t))u(t)+

+ a1 g m1mc sin(x2(t)) + +a1
2m1

2 cos(x2(t)) sin(x2(t))x
2
4(t)+

− a1 bcm1 cos(x2(t))x3(t)

(23b)

D(x, u) = −a12m1
2 cos2(x2(t)) + +a1

2m1
2 +mc a1

2m1 + I1m1 + I1mc (23c)

where I1 are the pendulum’s moment of inertia around its center of mass, a1 is the distance
from the pendulum’s joint to its center of mass, bc and b1 are the viscous friction coefficients
for the cart and pendulum respectively and mc and m1 are the masses of the cart and the
pendulum. In the simulations, the physical parameters are defined according to the Table 1.

Table 1. The physical parameters of the simulated pendulum-cart system in base units.

Physical
parame-

ter

Meaning Value

I1 Pendulum’s moment
of inertia around its

center of mass
0.0227kgm2

a1 Distance from the
pendulum joint to its

center of mass

0.18 m

bc Linear cart friction
coefficient

10 N s
m

b1 Pendulum joint
friction coefficient

0.15 N s
m

mc Mass of the cart 0.8 kg

m1 Mass of the pendulum 1 kg

g Gravitational field
intensity

9.81 N
kg

The state derivatives ẋ1 and ẋ2 are equal to the state variables x3 and x4 respectively. With
the state derivative vector ẋ defined, the system can be numerically simulated using an ODE
solver, in this case I used MATLAB’s ODE45. During the simulation, the input U was defined
as a band-limited random noise process, which was created by low-pass filtering a white noise
signal. The result of the simulation are trajectories, or state measurements, X, with sampling
period ∆t = 0.001 s and total duration 65 s. To simulate real measurements, I only take the
first two variables, the cart position x1 and the pendulum angle x2. To simulate noise, I add an
additive white noise with zero mean and standard deviation σ = 0.005m for the cart position
measurements and σ = 0.0025rad to the angle measurements.

4.2. Processing the measurements

The SINDy-PI method requires full state measurements X, its derivatives Ẋ, and a function
library Θ(X, Ẋ). The state variables x3 and x4 are equal to ẋ1 and ẋ2 respectively and repre-
sent the cart’s linear velocity and the angle’s angular velocity respectively. The state derivative
variables ẋ3 and ẋ4 are the cart’s linear acceleration and the pendulum’s angular acceleration.
Before creating the candidate function library, the velocities and accelerations must be esti-
mated from the position measurements x1 and x2. This can be done by spectral differentiation.
Because the measurements contain noise, they must first be filtered. Since the data is intended
for numerical differentiation, the cutoff frequency is set relatively low to over-filter the signal for
reasons established before. The filtered signals are then numerically differentiated, generating
the velocities ẋ1 = x3 and ẋ2 = x4, which are again differentiated generating ẋ3 and ẋ4. The
signals x1 and x2 are shown in Figure 2, and the accelerations ẋ3 and ẋ4 are shown in Figure 3.
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Fig. 2. Comparison between the original noisy measurements of x1 and x2 and the filtered signals.

Fig. 3. Comparison between the computed accelerations ẋ3 and ẋ4 and the real accelerations.
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4.2.1. Creating the function library

The function library Θ(X, Ẋ) is a matrix with columns representing the candidate functions
θ. This step is where an expert’s input is necessary, because the candidate functions must be
created from the positions, velocities and accelerations so that all the terms that are in the real
system dynamics are also in the function library. I create these functions by first creating a set
of basis functions from which all the other candidate functions are generated. The state variable
x2, the angle of the pendulum, implies rotation, so I added the functions sinx2 and cosx2. The
positions of the cart x1 and the angle of the pendulum x2 don’t appear by themselves in the
real dynamics, so they’re not included in the basis function set. The state derivative variables
ẋ1 and ẋ2 are also omitted, because they’re already represented by x3 and x4 respectively.
The basis function set is therefore

Y = {x3, x4, sin(x2), cos(x2), u, 1, ẋ3, ẋ4} =

= {y1, y2, y3, y4, y5, y6, y7, y8}
(24)

A large number of candidate functions is then generated from Y by creating all the possible
4-th order terms. Because I included the constant term 1(t) in the basis function set, all 4-th
order terms of Y will actually be all terms of the 1-st order up to the 4-th order. This generates
330 candidate functions, but most of them are be dropped according to a set of manually defined
rules, because they’re not physically interpretable.
Creating the candidate functions manually is also possible, but it’s much more time consuming
than creating a large number of candidate functions and then defining a set of rules which
are used to remove the bad ones. Including a candidate function that isn’t in the real system
dynamics is no big deal, because sparse regression will simply discard it when looking for a
solution. But when a candidate function that is in the real system dynamics is missing from
the function library, then the solution cannot be found. For this reason, it’s safer to create
more candidate functions than is necessary than to risk not including an important candidate
function.
After dropping bad candidate functions, the function library Θ has 35 functions left. The
reference model equations both have less than 10 unique terms in total, so the solution should
pick less than 10 terms from the function library.
It’s also important to look at the correlations between candidate functions, because high pair-
wise correlations make the regression problem ill-posed. The correlation matrix for the function
matrix Θ used for identifying the model for ẋ3 is shown in Figure 4.

High pair-wise correlations themselves might give valuable insight about the actual system.
If a time-derivative of some variable is perfectly correlated with another variable, that variable
can be used as a model itself. In any case, the correlation matrix serves the expert as a guide
when dropping candidate functions from the function library.

4.3. Creating candidate models

The SINDy-PI method described in subsection 2.4. relies on guesses that a function θi from
Θ is active in the real dynamics. This guess is usually, for most columns, wrong. Because
of this, many models must be created using different guess candidate functions. Furthermore,
the hyperparameter λR used in the sequentially energy thresholded least-squares algorithm de-
scribed in subsection 2.2.3. defines the sparsity of the solution and it also must be guessed.
This means that for each candidate function guess, we must make another set of guesses of the
hyperparameter value and create the respective models. The objective is to find the best model
equation for each of the accelerations ẋ3 and ẋ4.

4.4. Picking the best candidate models

For each of the target variables, more than 200 models is generated. Many of these candidate
models have non-sparse solutions ξ and can therefore be dropped immediately. The rest of the
models must be evaluated according to some accuracy and simplicity metric.
For equal comparison, I reorder the models defined by the equation (15) after creating the
model back to the implicit form, by moving the guess function θi back into the function library
Θi at the i-th column and adding an element into the i-th row of ξi with a value of −1. This
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Fig. 4. Correlation matrix for the function library used to generate models for ẋ3. Shows the pair-wise
correlation between candidate functions θi and θj, where i is the row index and j is the column index in the
matrix.

results in an implicit model Θ(X, Ẋ)ξ = 0. Because the real model should be found whenever
a correct candidate function guess θi is made, a model that appears consistently is likely to
be correct. The solution vector ξ defining the models cannot however be compared directly,
because there will always be a deviation in the parameters or the signs will be flipped. The
objective is to find functions with the same active candidate functions. This can be done by
picking the solutions ξ for each implicit model and creating another vector a whose elements
have value 1 whenever the respective element in ξi is non-zero and 0 everywhere else. This
vector a, which I call the term activation vector, is computed for every candidate model. The
L1 distance in a between candidate models then simply says how many different active functions
the models have, let’s call this the activation distance. If two models have exactly the same
active terms, then the activation distance is 0. After computing a distance activation matrix,
which defines the activation distance between every pair of models, we can use clustering to
find consistent models, which are likely to be the correct ones.
After clustering the models using their activation vectors, every model is given a cluster label.
I only kept the models from clusters which contained 2 or more models. I then calculated the
RMSE accuracy metric on those models. The implicit models for ẋ3 and ẋ4 are visualized in
Figures 5. Each row represents a single model, with the respective y-axis tick describing the
guess function θi which was used to generate the model and the model’s training RMSE score.
The columns represent the candidate functions. Candidate functions that didn’t appear in any
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of the models aren’t visualized in the figures, because they’d make the plots too wide. The
red and blue squares represent the signs of coefficients of ξ associated with the given candidate
function, the square is red when the coefficient is positive, blue when it’s negative and white
when it’s 0.

(a) All unique implicit models for ẋ3.
trajectories.

(b) All unique implicit models for ẋ4.

Fig. 5. The set of sparse, consistent and accurate identified implicit models. Each row corresponds to one model,
with the y-axis labels specifying the model’s index, guess function used to find the solution and its training RMSE
metric.

The implicit models are then solved for the respective accelerations ẋ3 and ẋ4, in this case
using the Python’s symbolic math package SymPy. The comparison of the reference model
used for data generation and the best model identified from the data is in Table 2.

Table 2. Comparison of the reference and the identified models.

Cart acceleration model ẋ1 [ms2 ]

Reference −0.66407u+6.64064x3−0.11953x2
4 sin (x2)−0.02169x4 cos (x2)−1.91599 sin (2.0x2)

0.19531 cos (2.0x2)−1.0

SINDy −0.55672u+5.61287x3−0.10007x2
4 sin (x2)−1.61162 sin (2.0x2)

0.32312 cos2 (x2)−1.0

Pendulum angular acceleration model ẋ2 [ rads2 ]

Reference 1.81554u cos (x2)−18.15533x3 cos (x2)+0.1634x2
4 sin (2.0x2)+0.18156x4+32.05886 sin (x2)

0.3268 cos2 (x2)−1.0

SINDy 2.16696u cos (x2)−22.63092x3 cos (x2)+0.19338x2
4 sin (2.0x2)+38.39076 sin (x2)

0.19753 cos (2.0x2)−1.0

4.5. Evaluating the acceleration models

Now that we have model equations for both accelerations ẋ3 and ẋ4, we can take a state
measurement matrix X and external input measurement matrix U, pass their rows x and u
into each equation and get the predicted accelerations. The predicted accelerations can then
be compared to the real accelerations as computed by the reference model.
The comparisons of derivative predictions are in Figures 6.
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Fig. 6. Comparison of real accelerations to accelerations computed from the state using the identified model.

The model predictions are very close to the real accelerations, although there are some small
deviations. Consolidating the acceleration models, ẋ, into one state derivative vector equation
creates a full state model. This way, the identified model can be simulated the same way as the
analytically derived reference model. I simulated both from the same initial condition x[k = 0]
and using the same input sequence u. The trajectories for each state variable are visualized in
Figure 7

The trajectories start out very close to each other, but small deviations eventually add up
and the trajectories separate into relative chaos. In practice, the identified model would be
used for its predictive capability. The accumulation of errors (differences between the model
prediction and the real system) would be prevented with an estimator, for example a Kalman
filter, that uses sensor feedback to determine the real state by weighing both the model predic-
tion and sensor measurements.

5. Conclusion

An accurate nonlinear, rational model of the pendulum-cart system was identified from simu-
lated measurement data with additive white noise. The data was first filtered by transforming
the measurements into the frequency domain and setting the frequency components above the
cutoff frequency to zero. This data was then numerically differentiated leveraging the properties
of Fourier transforms to get the first and second derivatives needed for identification. Using the
SINDy-PI method, an implicit ordinary differential equation was identified for each of the two
accelerations in the system. From these two implicit models, the explicit equations were created
by symbolically solving for the respective acceleration. The identified acceleration equations
were accurate at predicting the acceleration given the state vector and external input value.
By combining both acceleration equations, a full state model of the pendulum-cart system was
created, which was then numerically simulated and compared to the real, analytically derived
model used for generating the training data. The trajectories generated by both the real and
identified model overlapped for the first few seconds, but the small errors between the models
accumulated and the trajectories eventually decoupled. However, the models are nevertheless
qualitatively nearly identical, and in practice, the imperfectness of the identified model would
be largely compensated for via sensor feedback and state estimation.
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Fig. 7. Parallel simulation of the reference model and the identified model. Full animation at:
https://git.io/JBPXD
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Nomenclature

x1 Cart position (m)
x2 Pendulum angle (rad)
x3, ẋ1 Cart velocity (m s−1)
x4, ẋ2 Pendulum angular velocity (rad s−1)
ẍ1, ẋ3 Cart acceleration (m s−2)
ẍ2, ẋ4 Pendulum angular acceleration (rad s−2)
x State vector ()
ẋ State derivative vector ()
Θ Function library ()
ξ Vector of model parameters ()
a Activation vector ()
X Matrix of state measurements ()
Ẋ Matrix of state derivative measurements

()
U Matrix of input measurements ()
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