
Yang Hong-Bin, Matous Cejnek Video disturber

VIDEO_FLAWER: REALISTIC VIDEO DISTURBER FOR
ARTIFICIAL VIDEO

Yang Hong-Bin 1, Matous Cejnek 2

1 FEL, CTU, Technická 2, Praha 6, Czechia, petingo.yang@gmail.com
2 DICE, FME, CTU, Technicka 4, Praha 6, Czechia

Abstrakt:
Klíčová slova:

Abstract: Although people try hard to minimize defects in a video most of the time, sometimes it is
needed to augment or simulate them for some reasons. We created a program which can add realistic
effects to videos, including camera shake, auto focus blur, and noise simulation.
Keywords: noise, synthetic data, digital video processing

1 Introduction
More or less, videos always come with defects. In most cases, people try their best to eliminate them or

minimize the affect. Camera and lens manufacturers develop optical image stabilizer to reduce the vibration,

continuously updating their noise reduction algorithm in order to attract consumers. Film makers use tripods to

shot steady videos, adjusting the parameters in order to decrease the ISO sensitivity. However, in some cases, it

is desired to add those defect to the video. For example, if a director wants to make a filmed scene more vivid,

adding camera shake effect on it may make audiences feel like they are in the scene personally. Another common

example is old video simulation where different kinds of noise is added. Or, as the title of this paper, it it possible

to disturb an video generated by computer graphic technology, making it more realistic. This disturber may have

further application, which is generating training data for deep learning-based stabilization or denoising method.

In this paper is proposed new python package - video_flawer - to create aritificial noise-like effects in video

records. Three major effects is implemented: camera shake, auto-focus blur, and noise simulation. The program

is done by Python with the help of OpenCV and Numpy.

2 Effects
2.1 Camera Shake

The first effect is camera shake. This effect appears in almost every video which is shot by a hand-held camera

due to the inevitable minor movement of human arms. That is to say, given a steady video (perhaps a tripod

shot), our program can convert it into one with artificial vibrations as if it is recorded by a hand-held camera. To

accomplish this, the movement is first broken down into four parts: left-right (𝑥-axis), up-down (𝑦-axis), front-

back (𝑧-axis), and rotation (𝑟). Moreover, movement in each axis can be further split into rhythmic movement and

random movement. By simulating them separately as a 1-dimensional action, a smooth and realistic camera shake

effect is created.

For the four axes, identical formulas with different parameters are used to determine the quantity of the

simulated movement. Commencing with rhythmic movement, the following equation is used:

𝑞ℎ𝑖 = 𝑎 · sin (𝑓 ∗ 𝑖) (1)

where 𝑞ℎ𝑖 denotes the quantity of rhythmic movement of frame number 𝑖, while 𝑎 and 𝑓 controls amplitude

and frequency respectively. In implementation, 𝑎 and 𝑓 are variables which can be altered by users based on their

Yang Hong-Bin, Matous Cejnek Video disturber

preferences. On the other hand, an algorithm which composes a wave with inconstant amplitude and frequency is

developed to simulate the quantity of random movement. This algorithm takes five parameters as input, including

total frame amount, minimum value of amplitude, maximum value of amplitude, minimum value of wavelength,

and maximum value of wavelength. The program would generate waves one by one randomly based on the

parameters and concatenate them altogether until every frame is assigned a value 𝑞𝑟𝑖 .
With 𝑞ℎ𝑖 and 𝑞𝑟𝑖 , total movement quantity 𝑞𝑖 can be obtained by simply summing them up as:

𝑞𝑖 = 𝑞ℎ𝑖 + 𝑞𝑟𝑖 (2)

For each axis, a unique sequence 𝑞 is generated, and a corresponding affine transformation matrix is then built

to express either translation, scale operation, or rotation. In the following equations, 𝑀(𝑎,𝑖) and 𝑞 (𝑎,𝑖) denotes

the transformation matrix and movement quantity of axis a, frame number i respectively. For 𝑥- and 𝑦-axis, the

following matrixes are used to express translation:

𝑀(𝑥,𝑖) =

[
1 0 𝑞 (𝑥,𝑖)

0 1 0

]
(3)

𝑀(𝑦,𝑖) =

[
1 0 0

0 1 𝑞 (𝑦,𝑖)

]
(4)

For 𝑧-axis, scaling is used to simulate the front-back movement, and the following matrix is used to express

the operation:

𝑀(𝑧,𝑖) =

[
𝑠 0 0

0 𝑠 0

]
(5)

where 𝑠 denotes the scaling factor

𝑠 = (100+ 𝑞 (𝑧,𝑖))/100 (6)

For rotation, the following matrix is calculated in order to rotate the frame by 𝑞 (𝑟 ,𝑖) degrees around the center

point:

𝑀(𝑟 ,𝑖) =

[
𝛼 𝛽 (1−𝛼) · 𝑐𝑤 − 𝛽 · 𝑐ℎ
−𝛽 𝛼 𝛽 · 𝑐𝑤 − (1−𝛼) · 𝑐ℎ

]
(7)

where

𝛼 = cos (𝑞 (𝑟 ,𝑖)) (8)

𝛽 = sin (𝑞 (𝑟 ,𝑖)) (9)

𝑐𝑤 = (frame width)/2 (10)

𝑐ℎ = (frame height)/2 (11)

After constructing the four matrixes, they are merged to 𝑀𝑖 so that only 1 affine transformation is required to

performed instead of 4.

𝑀𝑖 = (𝑀(𝑥,𝑖) +𝑀(𝑦,𝑖) +𝑀(𝑟 ,𝑖) −2𝐼) ·𝑀(𝑧,𝑖) (12)

After applying affine transformations on all the frames, camera shake would be successfully added to the video.

2.2 Auto Focus Blur
The second effect is lens blur. If a video is shot with auto-focus function, when the lens try to refocus, the focal

point would change and cause image blur. In this program, average blur is used to simulate this effect. An average

blur is done by doing a convolution between a frame and a 𝑛×𝑛 normalized box filter 𝐾 .

𝐾 =
1

𝑛×𝑛

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 1 1 · · · 1

1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

In other words, the value of every pixel in the blurred image would be the average of its neighborhood in the

original image. Therefore, the bigger 𝑛 is, the blurrier the output image will be.

The intensity change is simulated by the combination of two waves: one wave with larger amplitude and longer

wavelength following with another smaller one. The idea is, when a lens tries to refocus, it would adjust the focal

length until the target object is the clearest. However, it would know that it has reached the desired point after

exceeding a little. In implementation, since the intensity should be an integer to perform average blur, the figure

would be rounded.

Yang Hong-Bin, Matous Cejnek Video disturber

2.3 Noise
It is common to see noise when watching a video, especially in the past when videos are recorded by films.

Noise are caused by many reasons and have different form. In our program, three kinds of noise simulation is

implemented, including pixel noise, line noise, and pattern noise.

2.3.1 Pixel noise

Pixel noise is an inevitable noise, and it is especially obvious if ISO sensitivity is high. This effect makes

a frame contain bright spots or randomly-spaced bright pixels. To simulate this effect, two random number is

used. The first value controls whether the pixel value should be alter, and the second value controls the quantity of

alternation. In order to make it more realistic, the RGB channel are processed separately. The probability and the

minimum and maximum of the value can be adjusted by the user.

2.3.2 Line noise

Similar to pixel noise, one random number is used to determine whether a line should be altered. However, in

the next step, two random values are required where one controls the length and the other controls the quantity of

alternation.

2.3.3 Pattern noise

Pattern noise takes an extra image as input. The image is the reference of the pattern which would be added to

the video. It should come with black or transparent background. Otherwise, unnatural edge would appear. The

program would randomly scale and rotate the pattern and put it in a randomly selected place.

Original Pixel Noise Line Noise Pattern Noise

3 Running Program
In order to run the program, 2 packages are required: opencv-python [1] and numpy [2].

3.1 Installation
Simplest way to install the video_flawer is via pip:

p i p i n s t a l l v i d e o _ f l a w e r

3.2 Usage as utility
To flaw a video (with path ./test.mp4) with preset defects call:

py thon −m v i d e o _ f l a w e r t e s t . mp4

The output (for example /data/out.avi) file can be setup as:

py thon −m v i d e o _ f l a w e r t e s t . mp4 / d a t a / ou t . a v i

For customization of video defects you should create your custom config file (JSON format). You can provide

the file (for example ./my_config.json as follows:

py thon −m v i d e o _ f l a w e r t e x t . mp4 / d a t a / ou t . a v i my_conf ig . j s o n

Yang Hong-Bin, Matous Cejnek Video disturber

3.3 Usage in script
You can use video_flawer directly in your script with preset defects as follows

import v i d e o _ f l a w e r

INPUT_PATH = " t e s t . mp4"

OUTPUT_PATH = " ou t . a v i "

v i d e o _ f l a w e r . run (INPUT_PATH , OUTPUT_PATH)

The defect details can be provided as nested dictionary

import v i d e o _ f l a w e r

INPUT_PATH = " t e s t . mp4"

OUTPUT_PATH = " ou t . a v i "

CONFIG = {

" s h i f t _ s i n _ x " : {

" max_ sh i f t " : 3 ,

" f r e quency " : 0 . 25

} ,

}

v i d e o _ f l a w e r . run (INPUT_PATH , OUTPUT_PATH, c o n f i g _ d a t a =CONFIG)

Or the defects can be described in JSON file:

import v i d e o _ f l a w e r

INPUT_PATH = " t e s t . mp4"

OUTPUT_PATH = " ou t . a v i "

v i d e o _ f l a w e r . run (INPUT_PATH , OUTPUT_PATH, c o n f i g _ p a t h =" con f i g_examp l e . j s o n ")

4 Conclusion
In this paper the video_flawer Python package is introduced. The effects implemented in the library are

explained. Usage examples are provided. The project repository (all source codes) are accessible under MIT

license at https://github.com/matousc89/video_flawer.

Acknowledgement
This work was partially supported by the Grant Agency of the Czech Technical University in Prague, grant No.

SGS18/177/OHK2/3T/12.

Literature
[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[2] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Selected article from

Tento dokument byl publikován ve sborníku

Nové metody a postupy v oblasti přístrojové

techniky, automatického řízení a informatiky 2020

New Methods and Practices in the Instrumentation,

Automatic Control and Informatics 2020

14. 9. – 16. 9. 2020, Zámek Lobeč

ISBN 978-80-01-06776-5

Web page of the original document:

http://iat.fs.cvut.cz/nmp/2020.pdf

Obsah čísla/individual articles:
http://iat.fs.cvut.cz/nmp/2020/

Ústav přístrojové a řídicí techniky, FS ČVUT v Praze, Technická 4, Praha 6

http://iat.fs.cvut.cz/nmp/2020.pdf
http://iat.fs.cvut.cz/nmp/2020/

