
3
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Abstract: The Guiding Evolutionary Algorithm (GEA) was proposed by Cao, Xu and Goodman in 2016. 
The original algorithm was designed to apply the advantages of the previously published Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA) and the Bat Algorithm (BA). As part of this work, the 
effectiveness of the GEA algorithm in solving multi-modal optimization problems is analyzed and the results 
are compared to those obtained using PSO and BA. Once the algorithm is verified and accepted, the same 
is then applied to a System Identification task using a relay-based feedback method and finally, upon 
successful identification of a dynamic system, the system is controlled using a PID controller. The work 
investigates a non-linear approach to identification of dynamic systems using simple Second Order Plus 
Time-Delay Models (SOPTD). 
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1 Introduction 
Since the late 1990’s and even more recently in the 2000’s, there has been an extensive study of different 

algorithms for solving optimization problems. The ‘No-Free-Lunch’ Theorems for Optimization states that there is no 
universal algorithm for all problems, which means that there is always scope for improvement in the field of 
optimization [1]. In the book ‘Nature-Inspired Optimization Algorithms’ [2] Dr. Yang explores a whole new study of 
metaheuristics using nature inspired techniques. The bat algorithm as well as the Cuckoo-Search algorithm were 
known to produce promising results compared with those of its predecessors such as Particle Swarm Optimization or 
Genetic Algorithms. However, it was seen that while BA is a powerful algorithm in exploitation, it may sometimes 
end up being trapped into some local optima which makes it harder to use for global optimization algorithms [3]. The 
GEA was introduced to retail some advantages of each algorithm while avoiding some of the disadvantages [4]. With 
the help of the software MATLAB / Simulink, we aim to visualize the optimization mechanics of the three algorithms, 
namely GEA, PSO and BA and test and compare the efficiency of each for six pre-defined functions of varying 
complexity. We shall later test the same for a control application involving system identification and PID control. 

The article is arranged as follows: Section 1 provides an introduction to the article as a whole. Section (2) 
describes optimization approach using metaheuristic algorithms and then explains the three algorithms (GEA, PSO 
and BA) in brief after which, the results of the optimization are compared for a number of multi-modal functions. 
Section (3) introduces the concept of relay-based identification of dynamic systems and uses the GEA algorithm for 
parametric identification of the dynamic process following which, in section (4) a number of PID control algorithms 
are looked into for appropriate control of the processes using the identified dynamic model of the same. Finally, in 
section (6), the results of the optimization, identification and control are evaluated for a real dynamic system. 
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2 Optimization 
The two main categories in optimization are called Deterministic and Stochastic based optimization algorithms. 

Deterministic algorithms follow a definite procedure for arriving at a solution. Newton’s gradient-based algorithm for 
finding the maxima or minima of a function in finite space, also known as the ‘Hill-climbing algorithm’ is one such 
approach for finding the optima. While deterministic algorithms tend to always find a solution if it does exist, 
conventional gradient-based approaches are not quite feasible for large-scale problems in which the search space is 
larger or when the dimensions are much higher and due to this, we need to add a bit of randomness while searching 
for a solution. With Stochastic algorithms, we use the principle of probability wherein, we use randomization 
techniques in a well-defined and progressive manner so as to search for the optima in various different sections of the 
design space. The drawback of this method is that while these algorithms converge very quickly, they may tend to get 
stuck in a local optimum value instead of finding the true global minimum. That is, we cannot guarantee that we shall 
arrive at the precise solution, but rather, we look for the best solution which meets our pre-defined criteria which 
comes under the branch of Heuristics. The term ‘Metaheuristics’ is a sub-branch of heuristics, but Metaheuristics are 
inherently problem independent and can be used for a wide range of applications. 

As part of this article, the role of Nature-Inspired Metaheuristic algorithms in solving multi-modal problems is 
looked into. The mechanics governing these algorithms is closely related to natural occurring phenomena and is 
loosely modelled around natural species like swarm behavior (Particle Swarm Optimization), echolocation of bats 
(Bat Algorithm), survival of the fittest (Genetic Algorithm). Among all these algorithms, there exist a few main 
patterns which are similar and are necessary for efficient convergence to the optimum value. These three operators 
are as follows: 

1. Crossover: Provides good mixing within the solution space
2. Mutation: Provides essential exploratory framework for diversification of the solutions to avoid settling at

a local optimum solution.
3. Selection: Provides the necessary exploitative framework for intensification of the search.
Each algorithm essentially uses each of the above operators, but in different fashion. The manner in which it is

carried out, thus determines the efficacy of the method. While it is clear that there is no best method in general, the 
effectiveness is largely dependent on the problem at hand. 

To apply the above methods for our problem set, we shall have to use the following terms for building our 
solution: 

1. Dimensions (d): The dimensions is the number of variables which influence the objective functions or, in
short, this can be given as the number of search parameters to be optimized.

2. Random variables: These are variables whose values are randomly determined by a set of random
distribution rules such as Gaussian distributions, Uniform distributions, Levy Distributions. For the purpose
of the algorithms in this article, we use Gaussian distributed and uniformly distributed random variables.

3. Random Walk: A random walk is essentially a step taken randomly from a fixed point. The final value
depends on a number of randomly taken steps from the initial position.

4. Solutions ( : The solutions is a vector containing a number of points in a d-dimensional search space. In
some places, this is called individuals especially in relation to nature-inspired metaheuristics, and in some
others, like in PSO, these are known as particles. Solutions or individuals can be mathematically represented
as:

(1) 

Where, 
, … , d = number of dimensions of the search space 

5. Cost function ( : The cost function of any optimization problem is the most important as it describes
the problem or the function which needs to be optimized.
With the above definitions, we shall proceed to describe each of the methods.
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2.1 Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a meta-heuristic based optimization algorithm which was developed by 

modelling swarm behavior observed in nature such as bird flocking, fish schooling, swarming theory [5]. The idea 
behind this technique is based on the principle that each individual in the subsequent generations can benefit from the 
observations by the other individuals from the previous generations, thus improving the subsequent results. 

As described by the original algorithm, with each iteration (generation) each individual particle is attracted 
toward the position of the current global best  as well as its own best location  in history. The positions and 
velocities of the particles namely,  and respectively are updated as follows: 

(2) 

(3) 

The parameters  and  are learning parameters and the values of these can be adjusted based on the problem at 
hand and depending on how quickly we want the solution to converge. The parameter  is the inertia weight and while 
it is not absolutely necessary, it helps to ensure that the particles do not jump around the optimum value. Finally, at 
the end of every generation, the global best position as well as the individual best is updated using the cost function 
as follows: 

min
, if 

(4) 

The Pseudo-code of the above algorithm can be given as follows [2]: 

Figure 1- Pseudo Code - Particle Swarm Optimization 

Particle Swarm Optimization 
1. Objective function , , … ,

2. Initialize locations  and velocity  of n particles

3. Find  from min , …  (at t = 0)

4. While (criterion)

For (loop over n-particles and d-dimensions
Generate new velocity 
Calculate new locations 
Evaluate objective function at locations 
Find the current best for each particle 
End for
Find the current global best 
Update 1 (iteration counter)

5. End while

6. Output final results  and .
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2.2 Bat Algorithm 
The inherent principle of BA is quite similar to PSO wherein the BA also uses swarm intelligence for finding 

the optima, however, in case of BA, the method used is frequency tuning which, is based on the echolocation principle 
of bats. In essence, PSO is a specific case of BA upon appropriate parameter setting. In case of BA, the position and 
velocities are updated using the frequency f as follows:  

Where,  
:  frequency of ith particle 
, : max and min search frequency ( 0, 2)

(5) 

. ) (6) 

(7) 

Once again, the global best position is updated at the end of each iteration similar to PSO. In addition to the 
above, the BA also provides a necessary mechanism for exploitation using local search as: 

,
Where, 
: Scaling factor 0.1 x search range for each dimension

(8) 

The intensity of the local search is supposed to increase as the solution moves closer towards the global minimum 
which is therefore more as the algorithm progresses as compared to the beginning stages. This can be regulated by 
increasing the pulse emission rates as the number of generations rise. Additionally, as the bat moves closer to its prey, 
the loudness decreases, which means that the algorithm moves from exploratory mode to exploitative mode. This can 
be represented by: 

(9) 

1 (10)

The above equations and search procedure can be seen in the below pseudo-code. 
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Figure 2 - Pseudo Code - Bat Algorithm 

2.3 Guiding Evolutionary Algorithm (GEA) 
The Guiding Evolutionary Algorithm, while similar to the above two described algorithms, is essentially simpler 

to use due to the fewer number of parameters required for tuning the optimization. Like the above, the algorithm 
consists of Crossover, mutation and local search which can be described by the below equations much simpler as 
compared to the previous ones. 

1. Crossover: The crossover for GEA is given by:

Where, 
: Step length of position increment, uniformly distributed r.v 

(11)

The step length  defines the rate of convergence and is generally between 1 and 2. A higher value represents 
faster convergence. 

2. Mutation: The mutation provides the required exploratory mechanics for optimization. It can be given by
the equation:

Where, 
: Uniform r.v [-1, 1] 
: Mutation vector,  

max a,  ; [a, b] = range of jth dimension 

(12)

According to GEA, the probability of mutation is given by the following: 

Bat Algorithm 
1. Objective function , , … ,

2. Initialize locations  and velocity  of n particles, ( 1,2…

3. Initialize frequencies , pulse rates  and loudness 

4. Find  from min , …  (at t = 0)

5. While (t<max number of iterations)

Generate new solutions by adjusting frequency,
Update velocities and locations as per Bat Algorithm
If (rand > ri)

Select a solution among the best 
Generate a local solution around the best 

End if 
Generate new solution by flying randomly 
If (rand < Ai & f(xi) < f(x*)) 

Accept new solutions 
 Increase ri and reduce Ai
End if 
Rank the bats and find current best x*

6. End while
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ln
Where, 

: max number of generations 
:  current generation 
: 0.2 (constant) 

(13)

The above equation shows that the probability of mutation increases as the generations pass, thus it helps 
ensuring that the solution does not settle around the local maxima / minima. 

3. Local: As before, the local search provides the necessary exploitative dynamics and can be given as follows:

Where, 
L: Local search vector 

0.1 ; [a, b] = range of jth dimension 

(14)

Similar to the mutation vector, the local search functions similar to the mutation except that it serves to find 
a solution around the current best unlike mutation, which helps to find a new solution around the unsearched 
territory. 
Again, the probability of local search is given by p defined by equation (13). 

Figure 3 - Pseudocode - GEA Algorithm 

GEA Algorithm 
1. Objective function , , … ,

2. Initialize locations , define parameters c, M, L

3. Evaluate the initialized positions

4. Select the best individual 

5. While (t<max number of iterations)

Update p;

For each individual:

Make crossover to generate a new individual 
If (rand <p)

Make mutation for 
End if
If (rand <p)

Make local search for 
End if
If (f(xi) < f(x*))

Accept new solutions
End if
Find current best x*

6. End while
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2.4 Test functions 
To evaluate the above methods, we shall test the above algorithms on six test functions as below and verify how 

quickly each tends to arrive at the real global optimum value.  

Table 1 - Test Functions 

Functions Function Name Expression Domain

F1 De-Jong’s Sphere function  [-100, 100] 

F2 Schwefel 2.2 function 
| | | |

[-15, 15] 

F3 Griewangk’s function 
cos

4000
1

[-15, 15] 

F4 Rosenbrock’s function 
100 1

[-15, 15] 

F5 Rastrigin’s function 
10 10 cos 2

[-5, 5] 

F6 Michalewicz function 
sin sin

sin sin
2

[0, 4] 
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For all of the above functions, our goal is to evaluate the point or points at which, the value of the above functions 
is at a minimum. We can visualize the above test functions as per the below fig. 4. For the purpose of visualization, 
we contain the number of dimensions to three at max since, for greater dimensions, we are unable to see the working 
mechanism of each in detail. 

2.5 Parameterization 
Before simulating the above functions, we first need to set appropriate parameters to ensure that our algorithm 

works in an efficient manner. The parameters for each algorithm are taken from literature. For PSO, we consider the 
parameters as follows [4]: 

Parameter Value

1.5 

0.9 

0.7 

1.5 

Similarly, the parameters for BA are given as [2]: 

Parameter Value

0

2

0.97 

0.9 

0.7 

0.1

0.95 

0.6 

For GEA, we use the parameters as follows [4]: 

Parameter Value

0.97 

[0, 2] 
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2.6 Test Results 
Using the above parameters for each algorithm, the functions are simulated in MATLAB from which we obtain 

the results as per the below table1.

Functions Results Minima

F1 (0,0,0)

F2 (0,0,0)

F3 (0,0,0)

1 It must be noted that the results obtained in the table refers to a single random observation. Nevertheless, the 
results displayed correctly reflect the observations obtained over a wide number of simulations. 
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F4 (1,1,0)

F5 (0,0,0)

F6 (2.2,1.57,-
1.8013) 

From the above observations, we see that the algorithms perform similarly for unimodal functions. For 
multimodal functions F3, F5 and F6, the algorithms GEA performs better than BAT and PSO especially due to the 
presence of the mutation operator which helps to prevent the algorithm getting stuck at its local optima. Furthermore, 
to enhance the capability of GEA to not get stuck at local optima, it is necessary to tweak the mutation and local search 
operator in such a way as to perform the mutation and local search on each dimension individually and not on all 
parameters as a whole. This can be done by modifying equations (12) and (14) as follows: 

. 1, (15)

And, 
. 1, (16)

The above modification is quite important in the case of multimodal functions wherein, the solution tends to get 
stuck in a local optima as the combined mutation approach renders it difficult for the solution to move all at once, but, 
when done individually for each dimension, there is a greater chance of finding a different solution. Without this 
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modification, the next tasks of system identification are fruitless as the solution rarely reaches its optimum value. 
In conclusion, we see that the GEA algorithm works extremely well for unimodal as well as multimodal functions 

and hence we can confirm its suitability for usage in the next part which involves system identification. 

3 Relay-based Feedback Identification 
With our optimization algorithm working, the next step is to apply this same algorithm in parametric 

identification of a dynamic system. In the part the goal is to perform black box identification of a dynamic system 
applicable to a wide range of processes. The main advantage of black box identification is the fact that this approach 
necessitates no knowledge about the physical system, but rather, uses the experimental data which includes inputs and 
outputs and a certain defining factor in terms of the cost function to identify the system to a reasonable accuracy. In 
this case, the ITAE (Integral Time Absolute Error) Method will be used as a criterion for the cost function. With 
system identification, the end goal is to find an accurate model of the process so as to control it correctly. In the later 
section, we shall use the model identified from this section to tune our PID controller which will be used to control 
our process. 

3.1 System Schematic 
The schematic of our system can be seen in the below figure. 

Figure 4 - Experimental Block Diagram Using Simulink 

The above figure shows the process G(s) that we wish to identify and then control. The input u is given by the 
output of the on-off relay which is used to generate  sustained oscillations within the closed-loop system as proposed 
by Astrom and Hagglund [6]. Once the closed-loop system is running automatically, we use the output from the 
controller ‘u’ and feed the same as input to our model GM(s) which, we consider to be a Second Order Plus Time 
Delay (SOPTD) model which is required to represent the dynamics of the actual process which we are trying to control. 
The reason for using an SOPTD model is that it can represent almost any linear system. As explained by Ramakrishnan 
and Chidambaram, the SOPTD model can incorporate various processes such as under-damped and higher order 
processes in which case, an FOPTD model is not sufficient [7]. Furthermore, SOPTD models can also be used for 
unstable processes in which case, an FOPTD model is not sufficient.  

Thus, by knowing the input ‘u’, the outputs ‘y’ and ‘yM’, we can proceed with identification of the process. 
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3.2 Problem Statement 

Figure 5 - Relay Identification Schematic 

With reference to the schematic from Simulink, we proceed with defining our problem. 
1. Model: The SOPTD model describe above can be represented as follows:

1
(17) 

Where, ‘K’ = Process gain, ‘ ’ = Time Delay, ‘ ’ and ‘ ’ are dynamic constants of the transfer function. 

2. Parameters: Using the SOPTD model from equation (17), our goal is to identify the parameters as follows:
, , , (18) 

3. Cost function: The criterion for optimization can be given by the cost function J which can be given by:
(19) 

Where, 
Model output 

 Process output 
 Simulation time 

The above cost function uses the ITAE criterion as our optimization constraint for minimizing the error over 
a pre-set simulation time. 

4. Constraints: The constraints restrict the upper and lower limits of each parameter

, , , 0 (20)
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3.3 Pre-defined Processes 
For the purpose of identification and verifying our identification procedure, we use a number of pre-defined test 

functions describing various types of processes. These are given as follows: 

Table 2 - Predefined Process Functions 

No. Type of Process Function 

1 Non-oscillatory Process (Lag-dominated) 1
1 0.1 1 0.01 1 0.001 1

2 Balanced Process 

3 Delay-dominated Process 
.

4 Oscillatory Process 
.

5 Non-oscillatory Process with Time Delay 
.

6 Fifth Order Process with Time Delay 

Each of the above processes represent a different type of process and our goal is to fit the complex process into a lower 
order model which can closely describe the actual response of the systems. 

3.4 Identification Results 
The results of the above identification procedure and optimization algorithm can be summarized in the table 

below: 

Table 3 - Identification Results for Pre-defined systems 

No. Function
K a2 a1 Td

(s)
fmin Elapsed Time 

(s)

1
P1

. . .

0.998
0.096

0.0674
0.049

1.172
0.235

0.033
0.039

0.0207
0.023

92.37 33.76

2 P2 0.966
0.083

3.32
0.369

3.034
0.26

0.891
0.099

0.122
0.049

93,9 45,56

3 P3
0.05 1

1.002
0.009

0.00038
0.001

0.0823
0.008

1.029
0.029

0.324
0.139

135.1 50.1

4 P4
1

0.5 1
0.943
0.065

1.017
0.122

1.147
0.107

0.364
0.105

0.364
0.105

107.4 39.65

5 P5
1 0.3 1

0.99
0.10

0.515
0.153

1.437
0.114

1.122
0.105

0.155
0.107

107,83
57,30

6 P6
5 1

1.022
0.217

109.9
13.17

17.17
1.33

8.20
0.66

0.222
0.058

83.65 69.09

Each system was simulated ten times for consistency to obtain the above results. We can verify the correctness 
of the above identified systems by comparing the step response and the Nyquist plot of the modelled system with 
those of the real processes. 

For example, a random simulation of the system 6 (P1) obtained the below step response and Nyquist: 
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Figure 6 - Step Response, Nyquist Plot - Process P1 

We see that both the step response as well as the Nyquist plot, closely resemble the actual system which we are 
trying to model and therefore, we can say that our identification is correct. Similar results were observed for the 
remaining systems as well. It must, be noted that although the algorithm manages to converge quickly, it is necessary 
to set the initial guess in the range selection to reasonable values. In this case the selected range for our initialization 
was [20, 20, 20, 5]. 

4 PID Control 
As stated earlier, the end goal of system identification of a dynamic process using lower order models is control. 

Therefore, our goal is to achieve appropriate control of the processes described by the equations in table (2) using the 
model identified in section (3). 

Figure 7 - Tuning Procedure [8] 

It must be noted that all the processes described in table (2) are all stable processes. Hence our goal with control 
is to firstly minimize the settling time and secondly to reduce the overshoot to an acceptable degree. For the purpose 
of control, we make use of the most commonly used PID controller.  

4.1 Closed-Loop System schematic 
The block diagram of the controller can be shown in the below figure. 

Figure 8 - PID Controller Block Diagram [9] 
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The equation for the controller in Laplace domain can be given by: 
(21)

Where,
 Proportional Gain – P-term 

 Integral Gain – I-term 
 Derivative Gain – D-term 

It must be noted that in the above figure (8), we aim to try to control the real unknown process using only the 
identified model with no more information about the system. 

4.2 Tuning Methods 
To tune the controller is to find suitable values of the proportional, integral and derivative gain so as to achieve 

our control objectives. For this, we will have to make use of a few empirical methods for controller tuning, namely: 
a) Direct Synthesis Method (DS) or Lambda-Tuning Method
b) Phase Margin Criterion (PMC) based Tuning Method [10]
c) Simple Control (SIMC Tuning Method

For applying the above methods, we shall have to reduce the SOPTD Model .  obtained in 
section (3.4) to one of the below forms: 

 for oscillatory processes 
Where, 

 oscillation frequency 
 damping ratio 

(22)

or 

 for non-oscillatory processes 
Where, 
, Time constants of modelled system

(23)

The relations for tuning the controller by the DS method [11], PMC method and the SIMC methods can be given 
by the below table: 

a) Non-oscillatory Processes ( 1

Table 4 - Tuning Equations (Non-Oscillatory Process) 

No. Parameter DS PMC

1
1
. .

2 ;
/

2
2. | |
or

2 . .

1

3
;
.

.

In the above equations, the parameter  is the closed loop time constant and can be estimated using a general 
rule:

Where, 
 dominant time constant of the process 

(24)
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As a thumb rule, we shall estimate the value of  as: .

For PMC Tuning, the parameters  and  refer to the phase margin and gain margin respectively. These 
values are generally in the range: 

 ; 2 5 (25)

It must be noted that the PMC tuning method is suitable for an SOPTD Model only. 
b) Oscillatory Processes ( 1

Table 5 - Tuning Equations (Oscillatory Process) 

No. Parameter DS PMC 

1
2 .

2
2

2
2. | |
or

2 . .

1

3
;
.

.

4.3 Tuning Results 
The results of the tuning using the above methods are displayed in table  

Table 6 - PID Tuning Results 

No. Function Identified Model PID Control 

1 P1
0.9843

0.1095 1.038 1

2 P2
0.9446 .

3.3514 2.9958 1
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3 P3 1.0175.
.

0.0786 1

4 P4
0.9469.

.

0.8799 1.1987 1

5 P5
0.9767. .

0.4658 1.4062 1

6 P6
0.9773. .

107.21 18.07 1

From the above output, we can conclude that the DS and PMC algorithms perform satisfactorily when it comes 
to tuning the processes P1-P6 using the identified SOPTD model. 

5 Identification and Control on Physical System 
To verify the theory and algorithms presented in the previous sections, we apply the same concepts of 

identification and PID control on a real system from the Automatic Control Laboratory.   

5.1 Experimental Setup 
The system which we will be using is a combination of two chambers arranged vertically in a tube with a system 

of interconnecting valves. The schematic of the setup can be seen in the below figures. 
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The experiment is a combination of two hollow chambers arranged vertically in a tube with a system of 
interconnecting valves. Pump C1 supplies water to the upper chamber, thus, delivering a pressure head which causes 
the accumulated water in the upper chamber to trickle down into the lower chamber and eventually back into the 
tank. A pressure differential sensor is used to map the height of the water in the lower column. Since the upper and 
lower tanks are connected to each other in series, the system is, by default a second-order system. 
To perform the experiment, we need to supply an input signal 0-10V to the pump via the MATLAB / SIMULINK 
software from the PC which is then transmitted to the pump which in turn pumps up water to the upper chamber A1. 
From the bottom hole of the upper chamber, water trickles down to the lower tank B1. The system output is 
measured in terms of the height of water column in the lower chamber B1. This output is measured by a pressure 
sensor which converts the pressure head to an equivalent height of water column. Before the experiment is 
performed, it is necessary to test the system for its static characteristics so that we supply the inputs and obtain the 
readings at around the operating point.  

5.2 Simulink Schematic Setup 
Similar to the Simulink setup in section (3.2), the experimental Simulink Schema of the physical system is 

arranged likewise, except that in this case, the input is not fed directly to the theoretical model, but instead is done 
separately once the readings have been collected. Hence, we will have two separate schematics, one for the physical 
system and the other, our Identification Schematic which uses the values from the physical system to optimize our 
process model for the purpose of simulation only.  

Figure 11 - Simulink Schematic - Physical system 

As can be seen from the schematic in Figure (11), we supply the model with an input from our relay controller 
which in turn causes the system to auto-oscillate. The input set-point 5.22(cm) is supplied to ensure that during 
experimentation, the process operates around the linear area only which is around the height 5.22 cm and the outputs 
of the relay are chosen so as be within the linear range. From this setup, the input to the system and the output 

Figure 9 - Schematic Diagram - Two Tanks System Figure 10 - Functional Diagram -
Two Tanks System 
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are recorded from the practical setup. 
Once the values are collected, these are now fed to the simulation setup (Identification Schematic) which operates 

within the MATLAB / Simulink environment only. The advantage of this is that using just one reading from the 
physical setup, we can simulate the theoretical model a number of times until we obtain the model which nearly 
describes the unknown process. The schematic of the optimization part can be seen in Figure (12). 

Figure 12 - Identification Schematic 

As can be seen from above, the same input 1 which was supplied to the real process are fed to the theoretical 
SOPTD model to obtain its output . By comparing the model output  with the real output , we can use our 
previously described method using the ITAE criterion and the GEA algorithm to identify our system. 

5.3 Identification Results 
By performing the above experiment and on simulation, we obtain the identified parameters and the model of 

the system as follows: 
.

. .
(26) 

We shall verify the accuracy of our identified models by plotting the step response and Nyquist plot of the 
SOPTD model which we have obtained and compare it with the real step response and frequency characteristics. 

We can see from the above step response and the Nyquist plot that the modelled output closely matches the real 
results process and therefore we can conclude that our identification method works correctly. 

Figure 14 - Step Response - Model vs Real Figure 13 - Nyquist Plot - Model vs Real 
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5.4 PID Control 
Using the above-identified models, we proceed to control the processes using the PID control methods detailed 

in section (4.2). The tuning parameters for control of the identified process from equation (26) are as follows: 

Table 7 - PID Tuning Parameters - Physical System 

No. Parameter DS PMC

1 Proportional Gain, rp 3.36 3.36 

2 Integral Gain, ri 0.07 0.07 

3 Derivative Gain, rd 25.48 25.48 

Figure 15 - PID Tuning of Two-tanks system – Simulated vs Real 

The figure (15) shows the PID tuning results of the physical setup. As we can see, the control results of the 
physical system are closer to the simulated results in the second case, when the set-point is 2 (cm) as compared to 
when the set-point is 5 (cm). This discrepancy can be due to the fact that the theoretical simulation assumes that the 
system is perfectly linear and doesn’t take into account the effects of saturation on the pump output. This results in a 
large overshoot when the set-point is increased which is a result of integral wind-up effect in the pump. The overshoot 
can be reduced suppling a setpoint of lower magnitude around a region nearer to the operating point, or by re-
simulating the process by taking into account the pump saturation. 

6 Conclusion 
To sum up the above concepts, we have briefly discussed three important topics namely Optimization, 

Identification and Control. From section (2), we have evaluated the possibility of using GEA with the afore-mentioned 
modifications as an effective strategy for non-linear optimization problems. The advantage of this algorithm lies 
mainly in its inherent simplicity in execution and its versatility in solving multi-modal optimization problems as 
compared to the other available algorithms which often remain stuck at the local optima rather than finding the global 
optimum value in a given search-space. The method was later used in section (3) and applied to a task involving relay-
based identification of a dynamic system and from the results in section (3.4), it was confirmed to correctly model the 
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unknown system. Post identification, the process was correctly controlled via simulation using a PID control and with 
the help of the DS and PMC tuning methods both of which used the identified SOPTD models from identification to 
effectively control the process. Finally, the results of the complete identification and control using our optimization 
approach were correctly verified using a real system.  

The above methods thus serve as an effective and efficient means of identification and control of unknown 
processes. Further research into this topic can include application of the GEA algorithm for Model Predictive Control 
as well as looking into different approaches for optimization like TABU Search [12]  or SOMA optimization method 
or Hybrid Bat Algorithm with Harmony Search [13].  
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