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INTERACTIVE JUPYTER NOTEBOOKS IN EDUCATION:
CASE STUDY OF AN AIRCRAFT ENGINE COMPRESSOR

Nina Kumer, Matous Cejnek, Adam Peichl
Ústav přístrojové a řídicí techniky, ČVUT v Praze, Fakulta strojní, Praha

Abstrakt: V tomto projektu je popsáno řešení teoretického problému a následná tvorba interaktivního
souboru jupyter notebook pro vysvětlení problémů. Teoretický problém představený v tomto článku je
studie kompresoru leteckého motoru. Problém je řešen pomocí dynamické analýzy. Všechny potřebné
odvození a rovnice jsou prezentovány v tomto článku. Nakonec jsou tyto rovnice vyřešeny pomocí
nástroje jupyter notebook.
Klíčová slova: jupyter notebook, dynamická analýza, modální souřadnice, periodická síla, impulzní
síla

Abstract: With this project we want to show a way how to solve theoretical problem, creating an
interactive Jupyter Notebook. For that purpose, we decided to study an aircraft engine compressor.
Given task is theoretical, but it could be easily used in real-life situation. We start solving our problem
by studying theoretical background of dynamic analysis. It contains deriving all the equations needed,
calculation eigenvalues and eigenvectors, transformation into modal coordinates, and harmonic and
impulse analysis. Derived equations are later on solved in Jupyter Notebook, using NumPy. All the
graphs are created with Matplotlib.pyplot.
Keywords: jupyter notebook, dynamic analysis, modal coordinates, periodic force, impulse force

1 Introduction
The purpose of this project is to show a possible way how to perform dynamic analysis on a practical case of

an aircraft engine compressor. We are examining multidegree-of-freedom system, its modal analysis and response

under a periodic and non-periodic (impulse) force.

First, theoretical research was made and important equations were derived. Actual computation was done with

Python in Jupyter Notebook [1]. It is an open-source web application that allows you to create and share documents

that contain live code, equations, visualisations and narrative text. Uses include data cleaning and transformation,

numerical simulation, statistical modelling, data visualisation, machine learning, and much more. For the needs of

this project, the most important packages are NumPy, which provides a high-performance multidimensional array

object and tools for working with these arrays [2], and Matplotlib.pyplot, which is designed to be able to create

simple and complex plots with a few command [3].

This project is important because it shows that once the theoretical equations are delivered, Python and Jupyter

Notebook are a very useful tools for computing and visualising the actual results. That makes them more

understandable and lifts our knowledge on a higher level.

2 Task
The explanation of the process of solving the problem is in this section. In subsection 2.1 the definition and

goals are given. We start solving the problem in the next subsection, 2.2, where equations of motion are derived.

We use them later in the subsection 2.3, where eigenvalues and eigenvectors are calculated. In subsection 2.4

physical coordinates are transformed into modal coordinates. We represent a continuous periodic function M1(t)
with Fourier series in subsection 2.5. Later on, we determine a steady-state response of the system. In the last

subsection 2.6, we analyse a response of the system on impulse force, using convolution integral.
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2.1 Definition and goals
Compressor is made of N disks with moment of inertia Ji . Free lengths of the shaft between the disks should

be modeled as a torsion spring with coefficient ki . Moment of inertia of each disk and spring coefficients are

described as

Ji = J0e1−0.3i,

ki = k0e1−0.3i,

where the parameters are given as follows:

Tab. 1: Given parameters

parameter unit value name/description
J0 Nm/rad 1400 moment of inertia

M0 kgm2 0.4 moment

N / 8 number of disks

T s 0.17 time of 1 period

t0 s 1.06 time, used when defining M2(t)
tk s 4.66 time, used when calculation convolution integral

Goals:

1. Determine equations of motion.

2. Determine eigenfrequencies and eigenvectors of the system. Graphically show eigenshapes. Normalise

eigenvectors.

3. Make a transformation into modal coordinates.

4. Because of an injury on the first and the second part of the compressor, mentioned parts are periodically

excited with function M1(t). Determine angular frequency of the system.

Fig. 1: Periodic function, M1(t).

5. Make approximation of the moment M1(t) with Fourier series. Show it graphically.

6. Calculate the response of the system in steady state. Show it graphically.

7. On the system is now acting impulse M2(t) = M0 tanh(−2 t
t0
). Show the response of the system graphically.

2.2 Equations of motion
In order to be able to start solving any problem, we have to first make a model. It should be as simple as

possible, but we should not neglect its important features.

If we make a discretization of a compressor with N elements, then this system has N degrees of freedom. In

our case, that means 8 degrees of freedom.

The equations of motion of a vibrating system can be often derived in terms of generalized coordinates by the use

2
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Fig. 2: Simplified model.

of Lagrange’s equations. To be able to use them, we have to calculate a kinetic energy of each disk and potential

energy of each torsion spring [4] as follows:

Ekin =
1

2

N∑
n=1

Ji �ϕi2, (1)

Epot =
1

2

[
N−1∑
i=1

ki (ϕi −ϕi+1)2
]
+ kNϕ

2
N . (2)

We combine both expressions in Lagrangian - a function that summarizes the dynamics of an entire system. It is

defined as L = Ekin −Epot . Lagrange’s equations can be now stated as

d
dt

(
∂L
∂ �ϕi

)
−
(
∂L
∂ϕi

)
= 0, (3)

We obtain a system of N equations of motion. We write them in a matrix form as

[M] { �ϕ}+ [K] {ϕ} = {0} , (4)

where [M] and [K] represent a mass and stiffness matrix, respectively; ϕ and �ϕ are a twist and acceleration vector,

respectively.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1 0 0 0 0 0 0 0

0 J2 0 0 0 0 0 0

0 0 J3 0 0 0 0 0

0 0 0 J4 0 0 0 0

0 0 0 0 J5 0 0 0

0 0 0 0 0 J6 0 0

0 0 0 0 0 0 J7 0

0 0 0 0 0 0 0 J8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.806 0 0 0 0 0 0 0

0 0.597 0 0 0 0 0 0

0 0 0.442 0 0 0 0 0

0 0 0 0.327 0 0 0 0

0 0 0 0 0.243 0 0 0

0 0 0 0 0 0.180 0 0

0 0 0 0 0 0 0.133 0

0 0 0 0 0 0 0 0.099

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 −k1 0 0 0 0 0 0

−k1 k1+ k2 −k2 0 0 0 0 0

0 −k2 k2+ k3 −k3 0 0 0 0

0 0 −k3 k3+ k4 −k4 0 0 0

0 0 0 −k4 k4+ k5 −k5 0 0

0 0 0 0 −k5 k5+ k6 −k6 0

0 0 0 0 0 −k6 k6+ k7 −k7

0 0 0 0 0 0 −k7 k7+ k8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2819 −2819 0 0 0 0 0 0

−2819 4908 −2089 0 0 0 0 0

0 −2089 3636 −1547 0 0 0 0

0 0 −1547 2693 −1146 0 0 0

0 0 0 −1146 1995 −849 0 0

0 0 0 0 −849 1478 −629 0

0 0 0 0 0 −629 1095 −466

0 0 0 0 0 0 −466 811

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2.3 Eigenvalue problem

We can find the solution of (4) by assuming a solution of the form ϕi(t) = θiT(t), where θi = const. and T is

a function of time. We substitute this new form in (4) and after some mathematical steps, we obtain eigenvalue

problem equation: [−ω2[M]+ [K]] θ = {0} (5)

where ω2 represents eigenvalue and its square root ω is natural frequency of the system. Equation (5) represents a

set of N linear homogeneous equations in the unknowns θi(i = 1,2, ...,N). For a nontrivial solution, the determinant

of the coefficient matrix must be zero:

det
[−ω2[M]+ [K]] = 0 (6)

The expansion of (6) leads to an N-th order polynomial equation in ω2. The solution (roots) gives N values

of ω2; it can be shown that all roots are real and positive, when matrices [M] and [K] are symmetric and positive

definite. If ω2
1
, ω2

2
, ..., ω2

N denote N roots in ascending order of magnitude, their positive square roots give N
natural frequencies of the system. The lowest value, ω1, is called the fundamental or first natural frequency.

In order to calculate the values of natural frequencies, we first substitute ω2 = λ, then eq. (5) becomes:[[M]−1[K]−λ[I]] θ = {0} (7)

For solving this equation in Python we don’t have to calculate when the determinant is going to be zero, but we’d

rather compute dynamical matrix as

[D] = [M]−1[K] (8)

and then with the built-in function numpy.linalg.eig we obtain eigenvalues and eigenvectors of this matrix.

Tab. 2: Natural frequencies

ω01 ω02 ω03 ω04 ω05 ω06 ω07 ω08

6.5391 34.2906 56.6362 76.8568 94.3898 108.6722 119.2306 125.7111

2.4 Modal coordinates
We start the transformation into modal coordinates by referring to the eq. (4). Physical coordinates ϕ are now

being replaced with modal coordinates as

{ϕ} = [Φ] · {η} , (9)
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where [Φ] represents modal matrix, which contains all eigenvectors; [η] represents a vector of modal coordinates.

If we insert (9) in (4), and multiply the expression with [Φ]T we obtain[
M
]
{ �η}+

[
K
]
{η} = {0} , (10)

where
[
M
]

and
[
K
]

represent modal mass and modal stiffness matrix, respectively. They are both diagonally. The

matrices are estimated as follows: [
M
]
= [Φ]T · [M] · [Φ] (11)[

K
]
= [Φ]T · [K] · [Φ] (12)

[
M
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.373 0 0 0 0 0 0 0

0 4.339 0 0 0 0 0 0

0 0 4.951 0 0 0 0 0

0 0 0 6.212 0 0 0 0

0 0 0 0 8.706 0 0 0

0 0 0 0 0 14.250 0 0

0 0 0 0 0 0 30.253 0

0 0 0 0 0 0 0 116.911

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
K
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0102 0 0 0 0 0 0 0

0 0.5102 0 0 0 0 0 0

0 0 1.5880 0 0 0 0 0

0 0 0 3.6692 0 0 0 0

0 0 0 0 7.7563 0 0 0

0 0 0 0 0 16.8284 0 0

0 0 0 0 0 0 43.0079 0

0 0 0 0 0 0 0 184.7850

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·104

2.5 Harmonic analysis; Fourier series
Any periodic function of time can be represented by Fourier series as an infinite sum of sine and cosine terms.

If M1(t) is a periodic function with period T , its Fourier series representation is given by:

M1(t) = a0

2
+

∞∑
n=1

[an cos (nωt)+ bn sin (nωt)] (13)

an =
2

T

∫ T

0

M1(t)cos (nωt)dt (14)

bn =
2

T

∫ T

0

M1(t)sin (nωt)dt (15)

Because function M1(t) is a odd function (it holds: −M1(t) = M1(−t)), coefficients a0 and an are equal to zero.

Even though Fourier series is an infinite sum, we can approximate most periodic functions with the help of only a

few terms. In Python, an interactive plot was made. User can change the number of terms and observe how the

graph changes. We decided that 50 terms is the best compromise between the number of used terms and fitting the

real function, Fig.3. Where function M1(t) is not continuous, we get a bigger deviation while using Fourier series,

and we can not fix that, even if we increase the number of terms.

Steady-state solution of eq. (13) is given by

{xP3} =
∞∑
n=1

{xnP3} (16)

{xnP3} = {XnP3 sin (nωt)} (17)

X (j)
nP3
=

bn
ω0j

· 1

1−
(
nω
ω0 j

)2
(18)
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Fig. 3: Function M1 (orange) approximated with Fourier series (blue). We used 50 terms.

We have to keep in mind that we do not take into account any damping.

Because we are still dealing with multidegree-of-freedom system, we go back into the modal space. The equation

is going to be similar to the eq. (10), only this time on the right side there is not a vector of zeros.[
M
]
{ �η}+

[
K
]
{η} = [

ΦT
] · {M1} (19)

[I] { �η}+
[
M
]−1

·
[
K
]
{η} =

[
M
]−1

· [ΦT ] · {M1} (20)

The first and the second part of the compressor are periodically excited with function M1(t). We have to create a

vector M1,act , which has values of M1 only in the first two rows, others are zero. In that way we obtain vector bn

{bn} =
[
M
]−1

· [ΦT ] · {M1,act

}
(21)

The last step is a transformation of modal coordinates back into physical, using the relation (9), and plotting a

graph.

Fig. 4: Steady-state response.
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2.6 Non-periodic force - impulse
We want to analyse the response of our system, when there is an acting impulse moment M2(t)=M0 tanh(−2 t

t0
).

Fig. 5: Function M2(t).

We are solving this problem by the use of convolution integral [5]:

x(t) =
∫ t

0

m2(τ)g(t − τ)dτ (22)

In the case of no damping, function g(t) looks like:

g(t) = 1

ω0

sin(ω0t) (23)

We have to transform vector M2 into the modal coordinates in the same way as in the previous case of periodic

function, eq. (20). Eq. (22) then looks like

x(t) =
∫ t

0

{
M2,mod

} (τ)g(t − τ)dτ (24)

The last step is a transformation of modal coordinates back into physical, using the relation (9), and plotting a

graph.

Fig. 6: Response of the system after impulse.
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3 Conclusion
This project consists of two main parts. First, we study theoretical background of the problem and derive all

the equations needed. Once that was done, we solved them with Python, creating a Jupyter Notebook. The most

important packages we used were NumPy and Matplotlib.pyplot. With Numpy we created vectors and matrices

and performed various operations: summation of arrays, dot products of two arrays, transposition of matrix,

computation of eigenvalues and eigenvectors, sorting of values, and many more. We used Matplotlib.pyplot for

plotting some graphs, for creating figuers, containing several subplots and for creating an interactive plot. All the

results we were able to predict from the theory were confirmed with calculations, for example: modal mass and

stiffness matrices should be diagonal and they actually are. All plotted graphs also make sense, so we can conclude

that our work was done correctly.
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