OPTICAL CHARACTER RECOGNITION
Mitja Avgunstin¢i¢, Adam Peichl FOR EXPIRATION DATES VALIDATION

OPTICAL CHARACTER RECOGNITION FOR EXPIRATION
DATES VALIDATION

Mitja Avgunstin¢ic', Adam Peichl?

"University of Ljubljana, mitja.avgustincic @gmail.com
2Czech Technical University in Prague, adam.peichl@fs.cvut.cz

Abstract: This paper focuses on custom OCR algorithm created for expiration dates validation using
mainly open source libraries. Two main approaches are proposed in this work: recognising every
character separately and unified characters method. To boost accuracy of OCR algorithm, several
preprocessing methods and algorithms are also introduced. The final module is written in python
and reaches satisfying accuracy considering all the difficulties, which have come across during the
implementation process.

Keywords: OCR, character recognition, image preprocessing, OpenCV

1 Introduction

In recent years a lot of development and action was focused on the optical character recognition (OCR).
Starting in the 1950, with the purpose of helping vision impaired persons to read, the OCR has developed and
greatly improved throughout the decades, leaving its marks mainly in industry.

In nowadays industry, the OCR is generally used as an aid for automatization of the processes, with the pro-
cessing speed being its stronghold. Primarily OCR is being used for document scanning, recording and tracking.
One of the most used applications of the OCR system is in the banking, where the OCR typed fonts were developed
for easier and more accurate character detection [1].

Among the other applications we can also find license plate recognition as surveillance technique and industrial
packages validation, where product numbers (barcodes) and expiration dates are validated.

In our project we focused on the optical character recognition of the expiration dates on food packages with the
purpose of validating the expiration date correctness in the production industry. Another possible application of
our project would be to integrate our system into smart refrigerators, where every package is scanned for expiration
date, before being put in the fridge, to ease the package and data management of the stored products.

The main focus was put on creating software for automatizating the process of reading an expiration date
from image and its implementation in python. Our system takes an image as an input, process it using different
algorithms and methods, and with the use of open source libraries recognises the characters in the expiration date.
Two approaches were tested with the intention to compare them between themselves and find the method with the
higher accuracy.

2 Optical character recognition (OCR)

Optical character recognition (OCR) is a process of classification of optical patterns contained in a digital im-
age corresponding to alphanumerical or other characters. The character recognition is achieved through important
steps of segmentation, feature extraction and classification [2].

OCR systems, with its capability of identifying graphic symbols that make up an alphabet of any language,
simulate the human ability to read. These systems start from the acquisition of an image through optical equipment
connected to a device to capture the graphic symbols (usually by a camera or a scanner). Digital image processing
techniques, computer vision and pattern recognition are applied to the image in order to obtain a code, such as
ASCII, which will represent each character [2].

OCR systems have become one of the most successful applications of technology in the field of pattern recog-
nition and artificial intelligence and have also been widely applied in various areas, such as industrial applications

17

OPTICAL CHARACTER RECOGNITION
Mitja Avgunstin¢i¢, Adam Peichl FOR EXPIRATION DATES VALIDATION

(Markov models, license plate recognition vertical, traffic sign recognition, etc). It is needed when the informa-
tion should be readable both, to humans and to machine, and alternative inputs cannot be predefined. There are
numerous commercial systems, but none so far have achieved recognition rates close to humans, especially when
the system works in an uncontrolled environment, with the inevitable presence of noise. However, these systems
have the advantage of total insensibility to eyestrain and in most cases outperform humans at speed of recognition
(2], [3].

The algorithm described in this article can be divided into 3 stages, first we used various techniques to prepro-
cess the image, second step was using algorithms for localization and segmentation of the image and the last step
was character recognition using open source OCR software.

3 Experimental setup and used software

For our project, several random food packages with expiration dates were used. Images were obtained using
the mobile phone Huawei P9 with 12 megapixel Leica camera with lens aperture {/2.2. Data set of expiration date
images was created for further processing and validation.

Software was created using python 3.7 programming language. There is a whole range of OCR software
available today in the markets like: Desktop OCR, Server OCR, Web OCR, Mobile OCR etc. When considering
possible OCR applications for our project, we tried different web OCR (websites), add-ons (Adobe Reader, Word)
and even applications. Accuracy of extracting text of any of these OCR tool varies from 71 % to 95 %, with proper
image preprocessing. Many OCR tools are available as paid and work really well but only few of them are open
source and free.

Among many libraries and OCR software provided on the internet, the most popular and widely used library is
tesseract [4]. The tesseract library was chosen based on some key properties such as being open source, high ac-
curacy, constant development and improvement (currently under Google development) and different programming
language integration (such as python, C++ and Java).

3.1 OpenCV

Open Source Computer Vision Library (OpenCV) [5] is one of the most widely used libraries in image process-
ing, which is developed and released by Intel Corporation. It is distributed under a BSD style license which allows
for royalty free commercial or research use with no requirement that the user’s code be free or open. OpenCV is
written in C and C++ and runs under Windows, Linux or MAC OS, but the code is well behaved and has ported
to many other operating systems [6].

OpenCV contains an optimized collection of C libraries spanning a wide range of computer vision algorithms,
including motion segmentation and pose recognition, multi-projector display system, object and face recognition,
and 3D reconstruction, etc. The broad functional areas supported by OpenCV include:

e basic structures and array manipulations

e image processing and analysis

e object structural analysis

e motion analysis and object tracking

e object and face recognition

e camera calibration and 3D reconstruction

e stereo, 3D tracking and statistically boosted classifiers
e user interface and video acquisition support

There is active development on interfaces for Python, Ruby, Matlab, and other languages [6].

3.2 Tesseract

Tesseract is an optical character recognition engine for various operating systems. It is free software, released
under the Apache License, Version 2.0. Since 20006, it’s development has been sponsored by Google.

18

OPTICAL CHARACTER RECOGNITION
Mitja Avgunstin¢i¢, Adam Peichl FOR EXPIRATION DATES VALIDATION

We are using python library PyTesser [7], which is an optical character recognition module for Python. It takes
an image as input and outputs a string. PyTesser uses the Tesseract OCR engine, converting images to an accepted
format and calling the Tesseract executable as an external script.

Tesseract’s output will have very poor quality if the input images are not preprocessed properly. Images
(especially screenshots) must be scaled up so that the text x-height is at least 20 pixels, any rotation or skew must
be corrected or no text will be recognized, dark borders must be manually removed, or they will be misinterpreted
as characters, etc.

4 Image Preprocessing

In order to preserve high accuracy, image preprocessing must be made. We used different methods and algo-
rithms in order to prepare the image for letter recognition with the highest possible accuracy.

Usually, in a computer vision system, the preprocessing step aims to improve the quality of the digital image.
Therefore, algorithms are applied to eliminate undesirable regions (noise), which arise due the conditions or the
method of acquisition. Low-pass filters are among the most commonly used techniques to eliminate and reduce
noise in an image. This type of filter smooths the image and reduces the number of gray levels and consequently
minimizes the noise. High frequencies, which correspond to fast transitions are attenuated. Median and Gaussian
are two types of low-pass filters widely used [3].

4.1 Gaussian Blur

A Gaussian filter softens the image based on the mathematical theory of the Gauss curve. This filter is applied
on the convolution matrix defined as mask, and depending mainly on the standard deviation o. Equation 1 repre-
sents the Gaussian filter in two dimensions, which means, that it is the product of two such Gaussian functions,

one in each dimension:

1 _ $2 +y2

Glx.y) = 5-—e ()

where x is the distance from the origin in the horizontal axis, y is the distance from the origin in the vertical axis,
and o is the standard deviation of the Gaussian distribution. When using two dimensional blurring, values from
Gaussian distribution are used to build a convolution matrix which is applied to the original image. Each pixels
new value is set to a weighted average of that pixels neighborhood. The original pixels value receives the heaviest
weight (having the highest Gaussian value) and neighboring pixels receive smaller weights as their distance to the
original pixel increases. This results in a blur that preserves boundaries and edges better than other, more uniform
blurring filters.

4.2 Color to Grayscale Conversion

The next step in image preprocessing was conversion from color to grayscale.
Grayscale image is one in which the value of each pixel is a single sample representing only an amount of
light. The image itself only carries intensity information.
Input images have RGB color channels. Classically, the grayscale image is obtained by a linearly weighted
transformation:
J(x,y) =a-R(x,y)+ B -G(x,y) +7-B(x,y) 2

The most popular method selects the weighted values of &, 8 and y by eliminating the hue and saturation infor-
mation while retaining the luminance.

To this end, a color pixel is first transformed to the so-called NTSC color space from the RGB space by the
standard NTSC conversion formula:

Y (x,y) 0.299 0.587 0.114 R(x,y)
I(x,y) | = [0.596 —0.274 —-0.322| |G(x,y) 3)
Q(x,y) 0.211 —-0.523 0.312 B(x,y)

where Y,I and Q represent the NTSC luminance, hue, and saturation components, respectively. Then the lumi-
nance is used as the grayscale signal J(x,y) = Y(x,y). Thus we have:

a=0.299, B=0587, y=0.114
With the grayscaling we reduced the noise of saturation and hue in the image, leaving only luminance on the

image [8].

19

OPTICAL CHARACTER RECOGNITION
Mitja Avgunstin¢i¢, Adam Peichl FOR EXPIRATION DATES VALIDATION

4.3 Thresholding

Another very common process in the preprocessing step is thresholding. This technique has set of values as
the threshold, usually in gray levels, which are maintained in an interval of image tones [3].

If a pixel value is greater than a threshold value, it is assigned one value (may be white), else another value is
assigned (may be black).

In our case the adaptive Gaussian threshold was used with the binary thresholding function. Binary threshold
function returns only values that are either black (0) or white (255).

Normal thresholding uses a global value as threshold value. It turns out that this may result in poor results
when dealing with images with different lightning conditions in different areas. Adaptive threshold on the other
hand calculates the threshold for small regions of the image resulting in different thresholds for different regions
of the same image giving us better results for images with varying illumination [9].

4.4 Image Closing

The last image preprocessing algorithm, we need to use, is image closing. Image closing is morphological
operation. Morphological operations can be used to construct filters similar in concept to the spatial filters. The
objective of the morphological operation is to eliminate the noise and its effects on the print while distorting it as
little as possible.

The image closing is usually used in image processing that tends to smooth sections of contours. However it
generally fuses narrow breaks and long thin gulfs, eliminating small holes and filling the gaps in the contour. For
closing operations 3x3 kernel was used [10].

(a) Original image (b) Grayscaled image

Spatiebujte do LAmsn Spotiebujta do: Laaea

17.12.18 17.12.18

@2 @®e
eEHS 5w) HHE?LEREP e 6 s)|§6 EILHAEHH
(c) Thresholded image (d) Closed image

Table 1: Sequence of preprocessing of an image necessary before recognition

4.5 Segmentation

In the next step all of the contours in the image were found using OpenCV function findContours [11]. These
contours can be divided into two groups:

1. contours of the characters we want to recognise
2. contours we recognise as a noise

There are many different approaches to split the contours into mentioned groups. The one used here takes the
boundaries of width and height of contours as parameters, which are set in accordance to the width and height
of the target characters on the preprocessed image, resulting in extracting of these character contours from every
possible contour in the image.

OpenCV also includes function called boundingRect [12]. This function was used to determinate the position
and the area of the contours in terms of coordinates. With information about the characters area and location, the
letter extraction follows [12].

In order to extract letter, white image was created that would serve as a canvas, as an matrix with all values
of 255 (white) and the same resolution of an input image. Later on, the position and area of each bounding box

20

OPTICAL CHARACTER RECOGNITION
Mitja Avgunstinéi¢, Adam Peichl FOR EXPIRATION DATES VALIDATION

around a character contour was taken and used to overwrite the values of the bounding box on the canvas white
image in the same position as in original image. With this technique, we end up with image that only contains
characters we want to recognise. The noise has been generally removed.

(a) Original image (b) Image of possible contours

7121

(c) Image of possible characters (d) Image of characters

Table 2: Segmentantion

5 Letter extraction

Final step in our software we had to take was the use of the library tesseract to recognise the characters from
preprocessed image and return it as a string.

Although we reduced most of the noise from the image, it is still possible that there is a noise in the image. If
we still have noise in the image or if the characters are not clearly shown, tesseract either recognises nothing or it
recognises non ASCII characters. The noise removal in this case was solved using returned string and remove all
the blank spaces and non ASCII characters as well as ASCII letters. The ending result is expiration date number
in the following format DDMMYYYY [13].

6 Unified characters method

In the beginning of this research an assumption was made, that recognising every character separately can have
its cons. These cons were confirmed with testing the software and are generally thought to be:

1. recognising more noise if the expiration dates characters are the same font size as noise text
2. lower accuracy because of punctuation'
3. lower accuracy because of different date formats

In order to improve the software and to avoid the cons used in separate character recognition method, an alterna-
tive approach was made.

Instead of using 3x3 kernel in image closing, horizontal size 30x5 kernel was chosen. With selecting kernel
crucially bigger horizontally than vertically, we achieve image closing of the horizontal printed text. With this
method, horizontally aligned text is merged. Contour functions are applied on the horizontally merged text and
when we have the contours, we implement them on the original preprocessed image with 3x3 image closing kernel.

In this case, instead of filtering the contours using the height and width of the characters, we can filter the
width of the whole expiration date. The input parameters are in this case easier to determine, since the expiration
date is usually stand alone print on the package and it usually has different text width than noise in the image.

The rest of the algorithm, including image processing, segmentation and tesseract character recognition remain
the same.

For example character >.< can be recognised as >0«

21

OPTICAL CHARACTER RECOGNITION
Mitja Avgunstin¢i¢, Adam Peichl FOR EXPIRATION DATES VALIDATION

G5 = 7

(a) Original image (b) Horizontaly closed image

(c) Image of possible contours (d) Image of possible characters

Table 3: States of Unified characters method

7 Conclusions

One of the first realisation made was that the accuracy of the both methods is the same, 66.7 %. In both cases
low accuracy was achieved due to different lightning and other surrounding effects on the images. It should be
also taken into consideration the cameras automatic mode for photograph optimisation, that changes parameters
differently for every single image. One of the reason for not recognised expiration dates is also the bad quality of
the printing expiration dates on the packages, because some of them were partially washed or brushed off.

When analysing the single OCR method conclusion was made, that it is easier and much more accurate to
recognise the expiration dates on the packages, where expiration date font is sufficiently bigger than the other text.
There are also eventual problems, with noise in the close region of the character, because simple long thin noise
contour can be easily recognised as »I« or >1<. This kind of missinterpretation are not in the unified OCR method,
because the tesseract library, when being fed with merged letters recognises and distinguish between characters
and punctuation and sometimes even noise. However in some cases although the single OCR recognises the photo,
no matter of the input parameters, the unified OCR recognises nothing.

Some general conclusions regarding the expiration dates were also made. The most clearly date expiration
dates are the one who are printed with black color on white background. The OCR accuracy also depends on the
material, the expiration date is printed on, the most success we get with carton, while plastics are harder to read
due to reflective light our camera captures. Dot matrix character expiration dates are one of the most hard to read
since for proper OCR it is needed to have closed contours. Stamped expiration dates also cause problems reading
the expiration dates, since many of the character details are washed or brushed off, leaving incomplete letters, our
program fails to recognize.

In order to have better OCR expiration date recognition in industry for validation purposes, the products
provider should take an extra step in designing more OCR friendly packages. Some of the possible solutions are:
different font sizes for expiration dates, OCR typed fonts, material where expiration date is printed (paper sticker
instead of plastics) and most important of all, the controlled space where capturing and validation will be made.

Some of the future work considerations are using grayscale camera of lower resolution than 12 MP. With this
action we reduce the computing time, making it more suitable for real-time industry and simplification of the
software could be made with removing some of its features. Secondly, bigger amount of data set could be used in
order to obtain better accuracy and one type of food packaging, captured in constant not-changing space should
be used.

Acknowledgements

This project was supported by grant SGS18/177/OHK2/3T/12. The project was programmed in Python and
source codes are available on request.

22

OPTICAL CHARACTER RECOGNITION
Mitja Avgunstin¢i¢, Adam Peichl FOR EXPIRATION DATES VALIDATION

References

[1] Amarjot Singh, Ketan Bacchuwar, and Akshay Bhasin. A survey of ocr applications. International Journal
of Machine Learning and Computing, 2(3):314, 2012.

[2] Pratixa Badelia Soumya K. Ghosh Arindam Chaudhuri, Krupa Mandaviya. Optical Character Recognition
Systems for Different Languages with Soft Computing. Springer International Publishing AG 2017, 2017.

[3] Gabriel B Holanda, Joao Wellington M Souza, Daniel A Lima, Leandro B Marinho, Anaxdgoras M Girao,
Jodo Batista Bezerra Frota, and Pedro P Reboucas Filho. Development of ocr system on android platforms
to aid reading with a refreshable braille display in real time. Measurement, 120:150-168, 2018.

[4] pytesseract. https://pypi.org/project/pytesseract/. Accessed: 2019-02-19.
[5] Opency. https://opencv.org/. Accessed: 2019-02-20.

[6] Opencyv - about. https://opencv.org/about/. Accessed: 2019-02-20.

[7] Pytesser. https://pypi.org/project/PyTesser/. Accessed: 2019-02-22.

[8] Color conversions. https://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html. Accessed: 2019-
02-21.

[9] Image thresholding. https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html. Accessed: 2019-
02-21.

[10] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Prentice Hall, Upper Saddle River,
N.J., 2008.

[11] Opencv - findcontours. https://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/find_contours/find_contours.html.
Accessed: 2019-02-25.

[12] Opencv - boundingrect. https://docs.opencv.org/3.1.0/dd/d49/tutorial _py_contour_features.html. Accessed:
2019-02-25.

[13] python.org - string. https://docs.python.org/2/library/string.html. Accessed: 2019-02-25.

23

Selected article from
Tento dokument byl publikovan ve sborniku

Nové metody a postupy v oblasti pfistrojové
techniky, automatického fFizeni a informatiky 2019
New Methods and Practices in the Instrumentation,

Automatic Control and Informatics 2019
27.5.-29.5. 2019, Zvikovské Podhradi

ISBN 978-80-01-06617-1

Web page of the original document:
http://iat.fs.cvut.cz/nmp/2019.pdf

Obsah ¢isla/individual articles:
http://iat.fs.cvut.cz/nmp/2019/

Ustav pristrojoveé a fidici techniky, FS CVUT v Praze, Technicka 4, Praha 6

http://iat.fs.cvut.cz/nmp/2019.pdf
http://iat.fs.cvut.cz/nmp/2019/

