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Abstract. Decision trees have been successfully applied to many areas
for tasks such as classi�cation, regression, and feature subset selection.
Decision trees are popular models in machine learning due to the fact
that they produce graphical models, as well as text rules, that end users
can easily understand. Moreover, their induction process is usually fast,
requiring low computational resources. Fuzzy systems, on the other hand,
provide mechanisms to handle imprecision and uncertainty in data, based
on the fuzzy logic and fuzzy sets theory. The combination of fuzzy sys-
tems and decision trees has produced fuzzy decision tree models, which
bene�t from both techniques to provide simple, accurate, and highly
interpretable models at low computational costs. In this paper, we ex-
pand previous experiments and present more details of the FuzzyDT
algorithm, a fuzzy decision tree based on the classic C4.5 decision tree
algorithm. Experiments were carried out using 16 datasets comparing
FuzzyDT with C4.5. This paper also includes a comparison of some
relevant issues regarding the classic and fuzzy models.

Keywords: Fuzzy classi�cation systems, decision trees, fuzzy decision
trees.

1 Introduction

Machine learning is concerned with the development of methods for the extrac-
tion of patterns from data in order to make intelligent decisions based on these
patterns. A relevant concern related to machine learning methods is the issue of
interpretability, which is highly desirable for end users. In this sense, Decision
Trees (DT) [12] are powerful and popular models for machine learning since they
are easily understandable, quite intuitive, and produce graphical models that
can also be expressed as rules. The induction process of decision trees is usually
fast and the induced models are usually competitive with the ones generated
by other interpretable machine learning methods. Another quality of decision



200 Marcos E. Cintra et al.

trees is related to their induction process which performs an embedded feature
selection.

Fuzzy systems, on the other hand, have also been successfully applied in
many areas covered by machine learning. Fuzzy systems can handle uncertainty
and imprecision by means of the fuzzy logic and fuzzy sets theories, producing
interpretable models. A system can be considered "`fuzzy"' if at least one of its
attributes is de�ned by fuzzy sets, according to the fuzzy logic and fuzzy sets
theory proposed by prof. Zadeh [9,16]. A fuzzy system is usually composed of
a Knowledge Base (KB) and an Inference Mechanism (IM). The KB contains
a Fuzzy Rule Base (FRB) and a Fuzzy Data Base (FDB). The FRB has the
rules that form the core of the system. These rules are constructed based on the
fuzzy sets de�ning the attributes of the system, stored in the FDB. The FDB
and FRB are used by the IM to classify new examples.

Regarding decision trees, the ID3 [11], CART [1], and C4.5 [13] algorithms are
among the most relevant ones. Fuzzy decision trees have also been proposed in
the literature [2,7,8,10,14]. Fuzzy decision trees combine the powerful models of
decision trees with the interpretability and ability of processing uncertainty and
imprecision of fuzzy systems. Moreover, fuzzy decision trees inherit the desirable
characteristics of decision trees regarding their low computational induction cost,
as well as the possibility of expressing the induced models graphically and as a
set of rules.

In this work, we describe our fuzzy version of C4.5, named FuzzyDT [3],
which has been applied for the induction of classi�ers, presenting expanded ex-
periments and further details on its algorithm. FuzzyDT has also been applied
to a real-world problem, the prediction and control of the co�ee rust disease in
Brazilian crops [4]. This paper includes the experimental evaluation of FuzzyDT
and the C4.5 algorithm considering 16 datasets and a 10-fold cross-validation
strategy.

The remainder of this paper is organized as follows. Section 2 introduces the
fuzzy classi�cation systems. Section 3 discusses decision trees. The FuzzyDT
algorithm is described in Section 4. Section 5 presents a comparison between
classic and fuzzy decision trees. Section 6 describes the experiments and com-
parisons, followed by the conclusions and future work in Section 7.

2 Fuzzy Classi�cation Systems

Classi�cation is a relevant task of machine learning that can be applied to pattern
recognition, decision making, and data mining, among others. The classi�cation
task can be roughly described as: given a set of objects E = {e1, e2, ..., en}, also
named examples or cases, which are described by m features, assign a class ci
from a set of classes C = {C1, C2, ..., Cj} to an object ep, ep = (ap1

, ap2
, ..., apm

).

Fuzzy classi�cation systems are rule-based fuzzy systems that require the
granulation of the features domain by means of fuzzy sets and partitions. The
linguistic variables in the antecedent part of the rules represent features, and
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the consequent part represents a class. A typical fuzzy classi�cation rule can be
expressed by

Rk : IF X1 is A1l1 AND ... AND Xm is AmlmTHEN Class = Ci

where Rk is the rule identi�er, X1, ..., Xm are the features of the example con-
sidered in the problem (represented by linguistic variables), A1l1 , ..., Amlm are
the linguistic values used to represent the feature values, and Ci ∈ C is the class.
The inference mechanism compares the example to each rule in the fuzzy rule
base aiming at determining the class it belongs to.

The classic and general fuzzy reasoning methods [5] are widely used in the
literature. Given a set of fuzzy rules (fuzzy rule base) and an input example, the
classic fuzzy reasoning method classi�es this input example using the class of the
rule with maximum compatibility to the input example, while the general fuzzy
reasoning method calculates the sum of compatibility degrees for each class and
uses the class with highest sum to classify the input example.

Next section introduces the decision tree algorithms.

3 Decision Trees

As previously mentioned, decision trees provide popular and powerful models for
machine learning. Some of the relevant characteristics of decision trees include
the following:

� they are easily understandable and intuitive;
� the induced model can be graphically expressed, as well as a set of rules;
� they are usually competitive with more costly approaches;
� their induction process performs an embedded feature subset selection, im-
proving the interpretability of the induced models;

� decision trees are usually robust and scalable;
� they can handle discrete and continuous data;
� decision trees can be applied to datasets including a large number of exam-
ples;

� their inference process, similarly to their induction, requires low computa-
tional cost.

C4.5 [13] is one of the most relevant and well-known decision tree algorithm.
A fuzzy version of the classic C4.5 algorithm was proposed in [8], which is writ-
ten in Japanese. In this work, we present our fuzzy version of C4.5, named
FuzzyDT [3].

The classic C4.5 algorithm uses the information gain and entropy measures
to decide on the importance of the features, which can be numerical and/or
categorical. C4.5 recursively creates branches corresponding to the values of the
selected features, until a class is assigned as a terminal node. Each branch of the
tree can be seen as a rule, whose conditions are formed by their attributes and
respective tests. In order to avoid over�tting, C4.5, as well as most decision tree
algorithms, includes a pruning process. Speci�cally, C4.5 adopts a post-pruning
strategy, i.e., the pruning takes place after the tree is completely induced. The
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pruning process basically assesses the error rates of the tree and its components
directly on the set of training examples [12].

To understand the process of DT pruning, assume N training examples are
covered by a leaf, E of them incorrectly. This way, the error rate for this leaf is
de�ned by E/N. Considering this set of N training cases as a sample, it is possible
to estimate the probability of error over the entire population of examples cov-
ered by this leaf. This probability cannot be precisely determined. However, it
has a probability distribution that is usually summarized by a pair of con�dence
limits. For a given con�dence level CF , the upper limit of this probability can be
found from the con�dence limits for the binomial distribution; this upper limit is
here written as UCF (E,N). As the upper and lower binomial distribution limits
are symmetrical, the probability that the real error rate exceeds UCF (E,N) is
CF/2. As pointed out by Quinlan, although one might argue that this heuristic
is questionable, it frequently yields acceptable results [12].

The default con�dence limits used by C4.5 is 25%. However, it is important
to notice that the smaller the con�dence limit, the higher the chances of pruning,
while the higher the con�dence limit, the smaller the chances of pruning. Thus,
if the con�dence limit is set to 100%, the predicted error, obtained with the
examples at hand, is de�ned as the real error, and no pruning is performed. This
idea con�icts with the natural intuition that a 25% con�dence limit will produce
less pruning than an 80% con�dence limit, for instance. This way, one should
not associate the default 25% con�dence limits of C4.5 with actually pruning
25% of the generated tree. Next we detail the FuzzyDT algorithm.

4 The FuzzyDT Algorithm

FuzzyDT
4, proposed by us in [3], uses the same measures of the classic C4.5

algorithm (entropy and information gain) to decide on the importance of the
features. It also uses the same induction strategy to recursively partition the
feature space creating branches until a class is assigned to each branch. However,
for FuzzyDT, continuous features are de�ned in terms of fuzzy sets before the
induction of the tree. This way, the process of inducing a tree using FuzzyDT
takes a set of �discretized� features, since the continuous features are de�ned
in terms of fuzzy sets and the training set is fuzzy�ed before the decision tree
induction takes place. Algorithm 1 describes FuzzyDT.

4 A free test version of FuzzyDT including instructions on how to execute it, is
available for download at http://dl.dropbox.com/u/16102646/FuzzyDT.zip
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Algorithm 1: The FuzzyDT algorithm.

1 De�ne the fuzzy data base, i.e., the fuzzy granulation for the domains of

the continuous features;
2 Replace the continuous attributes of the training set using the linguistic

labels of the fuzzy sets with highest compatibility with the input values;
3 Calculate the entropy and information gain of each feature to split the

training set and de�ne the test nodes of the tree until all features are used

or all training examples are classi�ed ;
4 Apply a post-pruning process, similarly to C4.5, using 25% con�dence

limits as default.

As the fuzzy�cation of the training data is done before the induction of the
tree, the third step of FuzzyDT corresponds to the same step of the classic
decision tree algorithm. Figure 1 illustrates the process of data fuzzy�cation and
tree induction for a toy dataset with n examples, 3 attributes (At1, At2, and
At3), and 3 classes (Ca, Cb, and Cc).

#     At1   At2    At3      Class 

1 – 15    0.6    3.1    Ca 
2 – 17    0.9    2.2    Cb 
3 – 19    0.4    2.3    Cc 

... 

n – 16   0.8    2.9    Ca 

#     At1   At2            At3       Class 

1 – Small Low        High        Ca 
2 – High       High       Low        Cb 
3 – High  Low        Low         Cc 

     ...       …      …       … 
n – Low High       High        Ca 

At3 

At2 At1 

Small High 

Ca 

Small High 

Cb At1 Cc 

Cc 

Small High 

Cb 

Small High 

  Original dataset                              Fuzzyfied dataset                                           

        

       Induced Tree 

Fig. 1. The FuzzyDT algorithm - a toy example.

The �rst block of Figure 1 illustrates a dataset with n examples, three at-
tributes (At1, At2, and At3) and a class attribute. The fuzzy�ed version of this
dataset is presented in the second block. This fuzzy�ed set of examples is used
to induce the �nal DT, illustrated in the last block of Figure 1.

It follows a detailed comparison between classic and fuzzy decision trees.

5 Classic Versus Fuzzy Decision Trees

Classic and fuzzy decision trees, although sharing the same basic idea of building
a tree like structure by partitioning the feature spaces, also present some relevant
di�erences. Next, we discuss some of these similarities and di�erences, using the
classic C4.5 and FuzzyDT algorithms for the comparisons.

Evaluation of features � For the partitioning process, both versions use the
same measures, entropy and information gain, in order to select the features
to be used in the test nodes of the tree;
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Induction process � Both versions use the same approach: repeated subdi-
vision of the feature space using the most informative features until a leaf
node is reached or no features or examples remain;

Handling continuous features � The classic version splits the domain into
crisp intervals according to the examples at hand by minimizing entropy and
maximizing information gain. This process might cause unnatural divisions
that re�ect on a lower interpretability of the rules. As a practical illustration,
let us consider the Vehicle dataset, from UCI [6], which has Compactness as
its �rst test attribute of a decision tree induced by C4.5. Compactness is a
continuous attribute with real values ranging from 73 to 119. For the tree
induced by C4.5, it is possible to �nd the following tests using Compactness:
1. IF Compactness is ≤ 95 AND ... AND Compactness is ≤ 89
2. IF Compactness is ≤ 95 AND ... AND Compactness is > 89
3. IF Compactness is > 95
4. IF Compactness is ≤ 102
5. IF Compactness is > 102
6. IF Compactness is ≤ 109 AND ... AND Compactness is ≤ 106
7. IF Compactness is ≤ 109 AND ... AND Compactness is > 106
8. IF Compactness is > 109
9. IF Compactness is ≤ 82 AND ... AND Compactness is ≤ 81
10. IF Compactness is ≤ 82 AND ... AND Compactness is > 81
11. IF Compactness is > 82 AND ... AND Compactness is ≤ 84
12. IF Compactness is > 82 AND ... AND Compactness is > 84

These 12 tests make it di�cult to understand the rules since, for a whole
understanding of the model, the user has to keep in mind the subspaces
de�ned by each condition of the rule that uses the same attribute. A par-
ticular problem happens when the subdivisions are relatively close, strongly
restraining the domain of the features, such as in rule 10 (81 < Compactness

≤ 82).
Another issue regarding the use of continuous features by C4.5 is related to
the fact that the number of divisions used to split continuous attributes is not
handled directly by the algorithm, even if this parameter is previously known
or de�ned. In fact, for the algorithm to use a previously de�ned number of
divisions for any attribute, such attribute needs to be discretized before the
induction of the decision tree, since the number of divisions splitting contin-
uous attributes is dynamically determined during the tree induction process.
This way, the number determined by the decision tree algorithm might be
di�erent from the number of divisions used by an expert, for example. No-
tice that in the example provided, the decision tree uses 8 di�erent splitting
points for the same attribute (81, 82, 84, 89, 95, 102, 106, and 109), some of
them very close to each other.
FuzzyDT, on the other hand, is able to use the partitions (in terms of
fuzzy sets) de�ned by an expert. Furthermore, even if this information is
not available, automatic methods for the generation of fuzzy partitions can
be used, most of them controlling and preventing the creation of unnatural
splitting points.

Reuse of features � for C4.5, the same continuous feature can be included
several times in one single rule (such as feature Compactness in the previous
example). This repetition of the same feature and subdivision of the domain
degrades the interpretation of the rule.
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On the other hand, the induction process of FuzzyDT can be seen as in-
ducing a decision tree with fuzzy�ed (discretized) attributes, thus a feature
is never used more than once in the same rule. This fact favours the inter-
pretability of the generated rules.

Inference � As previously stated, a special issue regarding classic decision
trees is the fact that they can be seen as a set of disjunct rules in which only
one rule is �red to classify a new example. For fuzzy decision trees, di�erently
from the classic model, two branches are usually �red simultaneously, each
one with a degree of compatibility with an input example. This characteristic
of fuzzy decision trees is illustrated in Figure 2, which presents the partition
of attribute Atn on the left, de�ned by fuzzy sets S1, S2, and S3, as well as
part of a fuzzy decision tree on the right.

Atn 

Ato Atm 

S1                          S3 

             S2 

S1              S2                S3 
y1 

 

 

 
 

y2 

 

a   x1                   b                          c 

       Partition defining Attribute Atn 

Atn 

Fig. 2. Inference using FuzzyDT.

Notice that for an input value x1, fuzzy sets S1 and S2 are intersected with
membership degree values y1 and y2, respectively. This way, branches S1 and
S2, indicated by blue (lighter) arrows, of the fuzzy decision tree are �red.
For any input value ranging from a to b, the branches de�ned by fuzzy sets
S1 and S2 are triggered, while for an input value ranging from b to c, the
branches de�ned by fuzzy sets S2 and S3 are triggered.
Although the inference process for fuzzy DTs is more costly than for classic
ones, fuzzy DTs have an advantage over classic ones, illustrated in Figure 3.
Figure 4 presents the fuzzy sets (Small and Large) de�ning the attributes
tested in the decision trees of Figure 3, including the input values (Petal
Length= 4.9 and Petal Width = 0.6 and their corresponding membership
degrees used in the example.
The inference process of the classic decision tree is quite straightforward: if
Petal Width is ≤ 0.6, the example belongs to the Virginica class, otherwise,
the Petal Length attribute is tested; if it is ≤ 4.9, the example is classi�ed as
Versicolor, otherwise it is classi�ed as Setosa. This way, considering a new
input example to be classi�ed having Petal Length = 4.9 and Petal Width

= 0.6, both values on the borderline of the crisp discretization of the classic
decision tree, only the �rst rule is �red:
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Petal 

length 

<= 0.6                                 > 0.6 

Virginica 

Versicolor Setosa 

Petal 

width 

<= 4.9                              > 4.9 

Petal 

length 

Small                                   Large 

Virginica 

Versicolor Setosa 

Petal 

width 

Small                               Large     

Fig. 3. A classic(left) and a fuzzy (right) decision tree for the Iris dataset.

1                                        4.9                     6 

     1 

 
0.66 

 
 

 

0.34 

 
      0 

Petal Length                                                               Petal Width 

Small                                        Large 

0.1             0.6                                          2.5 

     1 

 
0.79 

 
 

 

0.21 

 

     0 

Small                                        Large 

Fig. 4. Fuzzy sets de�ning attributes Petal Length and Petal Width.

IF Petal Width is ≤ 0.6 THEN Class is Virginica.

For the fuzzy decision tree, on the other hand, the membership degrees of
the input example, shown in Figure 4 (Petal Length Small = 0.66; Petal
Length Large = 0.34; Petal Width Small = 0.79; Petal Width Large = 0.21)
are used to calculate the compatibility degree of the input example with each
rule. For this particular example, using minimum as t-norm, the fuzzy rules
and their compatibility degrees (in brackets) with the input example are:
1. IF Petal Width is Small THEN Class is Virginica (0.79)
2. IF Petal Width is Large AND Petal Length is Small THEN Class is Versicolor (0.21)
3. IF Petal Width is Large AND Petal Length is Large THEN Class is Setosa (0.21)

For this example, using the classic fuzzy reasoning method (best rule), the
class of the �rst rule, which has highest compatibility degree with the input
example, is used to classify the example as Virginica. Notice that this is the
same class de�ned by the classic decision tree.
Now, let us assume that the Petal Width of the input example is 0.61, while
the Petal Length continues the same. Notice that the di�erence in the Petal
Width between this example and the last one is quite small (0.01). This way,
we are likely to believe, intuitively, that the class of such similar examples
should be the same. Nevertheless, the classic decision tree classi�es this new
example as belonging to the Versicolor class. The fuzzy decision tree, on the
other hand, since it uses the compatibility degrees of the input values with
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the fuzzy sets de�ning the tree tests, still classi�es this new example with
the same class, Virginica. Notice that the same situation can occur for Petal
Length, as well as with any continuous attribute with a crisp discretization.
This robustness of fuzzy decision trees is highly desirable.
Since fuzzy DTs use the compatibility degree of each rule to classify an input
example, the classic and general fuzzy reasoning methods can be used in the
inference process. Notice that, once multiple rules derived from the decision
tree can be �red, an input instance can be classi�ed with the class of the rule
with highest compatibility with the input example (classic fuzzy reasoning
method), or with the class with the highest combination from the set of rules
with that given class (general fuzzy reasoning method).

In conclusion, the classic C4.5 algorithm and its fuzzy version, FuzzyDT,
present relevant di�erences regarding the handling of continuous features, reuse
of features, and inference procedures. C4.5 has a simpler and faster inference
process, while FuzzyDT is able to avoid the reuse of features, the repeated
splitting of continuous features. FuzzyDT also provides a more robust, although
more costly, inference process. Next, we present the experiments and results.

6 Experiments

FuzzyDT was compared to C4.5 using 16 datasets from the UCI - Machine
Learning Repository [6] and a 10-fold cross-validation strategy. C4.5 was selected
for the comparisons since FuzzyDT presents many similarities with C4.5, while
adding the advantages of fuzzy systems, regarding the processing of uncertainty
and imprecision, as well as interpretability, to the induced models.

Table 1 summarizes the characteristics of the datasets, presenting the number
of examples, features, including the number of continuous (c) and discrete (d)
features in brackets, number of classes, as well as the majority error, i.e., the
error of the algorithm that always predicts the majority class.

Table 1. Characteristics of the datasets.

Dataset Examples Features (c d) Classes ME Dataset Examples Features (c d) Classes ME

Breast 682 9 (9 0) 2 65.10 Ionosphere 351 34 (34 0) 2 35.90
Credit 653 15 (6 9) 2 45.33 Iris 150 4 (4 0) 3 66.67

Cylinder 277 32 (19 13) 2 35.74 Liver 345 7 (7 0) 2 57.97
Diabetes 769 8 (8 0) 2 34.90 Liver 345 7 (7 0) 2 57.97
Gamma 19020 10 (10 0) 2 64.84 Spam 4601 57 (57 0) 2 60.60
Glass 220 9 (9 0) 7 65.46 Steel 1941 29 (29 0) 7 32.82

Haberman 306 3 (3 0) 2 73.53 Vehicle 846 18 (18 0) 4 74.23
Heart 270 13 (13 0) 2 44.44 Wine 178 13 (13 0) 3 59.74

The experiments were carried out using the classic fuzzy reasoning method [5]
and post-pruning with a default con�dence level of 25%.

Table 2 presents the error rates of the experiments, including the average
error rates. The standard deviation rates for the error are presented in brackets
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(columns SD). Notice that the names of datasets Haberman and Ionosphere are
shortened to Haber and Iono, for space reasons. The best, i.e., smallest error
rates, are dark-gray shaded.

Table 2. Error rates.

Dataset FuzzyDT C4.5

Breast 1.49 (0.00) 5.13 (3.03)
Credit 7.81 (0.00) 13.00 (2.98)

Cylinder 6.16 (4.51) 30.65 (5.91)
Diabetes 21.84 (1.27) 25.52 (2.63)
Gamma 21.13 (0.70) 15.02 (0.58)
Glass 39.13 (0.00) 30.37 (6.87)
Haber 26.67 (0.00) 29.09 (6.10)
Heart 14.44 (5.60) 23.11 (5.94)
Iono 3.99 (7.35) 11.40 (3.83)
Iris 8.00 (2.67) 5.33 (5.81)

Liver 36.76 (4.65) 32.74 (6.57)
Segment 12.38 (2.33) 2.86 (1.12)

Spam 28.98 (0.00) 7.87 (1.35)
Steel 20.78 (0.93) 23.13 (2.48)

Vehicle 25.37 (1.80) 27.07 (4.10)
Wine 5.00 (6.43) 7.25 (6.59)

Table 3 presents the average number of rules (column Rules) and the average
of the total number of conditions in each model (column Cond.). The standard
deviation rates for the number of rules, as well as number of conditions are
presented in brackets (columns SD). The best, i.e., smallest rates, are dark-gray
shaded.

Table 3. Number of rules and conditions.

FuzzyDT C4.5 FuzzyDT C4.5
Dataset Rules SD Rules SD Cond. SD Cond. SD

Breast 15.00 (0.00) 12.30 (3.32( 50.00 (0.00) 52.70 (19.83)
Credit 7.80 (1.83) 19.30 (6.48) 21.40 (5.50) 90.90 (33.76)

Cylinder 45.80 (4.87) 42.80 (9.45) 198.50 (26.16) 248.50 (102.69)
Diabetes 13.40 (5.50) 23.60 (7.55) 42.60 (22.00) 150.20 (64.15)
Gamma 43.00 (0.00) 328.70 (31.36) 228.00 (0.00) 3,634.80 (435.18)
Glass 24.00 (0.00) 24.10 (2.17) 99.00 (0.00) 137.80 (20.35)
Haber 4.60 (1.20) 3.10 (1.64) 8.30 (2.10) 6.90 (4.18)
Heart 22.40 (2.84) 23.60 (3.67) 78.90 (13.87) 95.70 (23.08)
Iono 21.00 (0.00) 13.90 (1.45) 89.00 (0.00) 72.40 (13.15)
Iris 5.00 (0.00) 4.60 (0.66) 9.00 (0.00) 12.10 (3.08)

Liver 2.40 (1.28) 24.50 (4.92) 3.70 (2.00) 139.90 (34.60)
Segment 28.80 (1.89) 41.80 (2.96) 127.30 (13.52) 314.70 (35.73)

Spam 55.00 (0.00) 100.40 (10.43) 660.00 (0.00) 1,045.50 (142.89)
Steel 225.60 (2.85) 159.90 (6.74) 1,761.70 (24.48) 1,909.00 (125.86)

Vehicle 82.00 (6.47) 66.30 (7.20) 530.50 (62.02) 503.00 (79.81)
Wine 15.40 (0.80) 5.10 (0.30) 48.20 (4.40) 12.50 (1.20)

Figure 5 present the error rates for FuzzyDT and C4.5 graphically. The red
(darker) line represents C4.5, while the blue one (lighter) represents FuzzyDT
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Fig. 5. Error rates.

As can be observed, FuzzyDT obtained better results than C4.5, i.e. smaller
error rates, for 10 of the 16 datasets. All the models obtained better error rates
than the majority error of the datasets included in the experiments. In order
to check for statistically signi�cant di�erences, we executed the Mann-Whitney
test [15], which, with a 95% con�dence, found no statistically signi�cant di�er-
ences between FuzzyDT and C4.5.

For the evaluation of the interpretability of the models, we compared the
average number of rules and the average of the total number of conditions in
the models induced by FuzzyDT and C4.5. In this work, we adopt the average
number of conditions in the induced models as the measure of the syntactic
complexity of the models.

Regarding the number of rules of the induced models, C4.5 ties with FuzzyDT,
both presenting better results (smallest number of rules) for 8 datasets. It is in-
teresting to notice that for the Gamma dataset, although the error rate obtained
by the model induced by C4.5 is smaller than the one of FuzzyDT, the number
of rules for the C4.5 model is 8 times larger than for FuzzyDT: 43.00 rules for
FuzzyDT against 328.70 for C4.5. No other discrepancies are present in the
results regarding the average number of rules of the induced models.

Figure 6 present the average number of conditions in a graphical manner.
Notice that a 10-base logarithm scale is used for the number of conditions. Thus,
the lower portion of the graph varies from 3 to 30 conditions, while the upper
area varies from 300 to 3,000 conditions.

Regarding the average of the total number of conditions in the models,
the ones induced by FuzzyDT were smaller than those of C4.5 for 12 of the
16 datasets. Moreover, notice in Figure 6 that for the Credit, Gamma, and
Liver datasets the number of conditions of the C4.5 models is larger than for
FuzzyDT. In fact, the number of conditions of the C4.5 models is 3 times larger
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Fig. 6. Average of the total number of conditions.

than FuzzyDT for Credit, 16 times larger for Gamma, and 38 times larger for
the Liver dataset.

In summary, FuzzyDT presented smaller error rates than C4.5 for most of
the datasets, as well as smaller syntactic complexity for 12 datasets. The models
induced by C4.5 for three datasets were considerably more complex than those
induced by FuzzyDT.

Next, we present the conclusions and ideas for future work.

7 Conclusions

Decision trees have been successfully applied to many areas for tasks such as
classi�cation, regression, and feature subset selection, among others. Decision
trees are popular in machine learning due to the fact that they produce graph-
ical models, as well as textual rules, that end users can easily understand. The
induction process of decision trees is usually fast, requiring low computational
resources.

Fuzzy systems, on the other, provide mechanisms to handle imprecision and
uncertainty in data based on the fuzzy logic and fuzzy sets theory. The com-
bination of fuzzy systems and decision trees has produced fuzzy decision tree
models, which bene�t from both techniques to provide simple, accurate, and
highly interpretable models at low computational costs.

In this paper, we detailed the FuzzyDT algorithm, a fuzzy decision tree
based on the classic C4.5 decision tree algorithm and expanded previous experi-
ments. We also provided a thorough comparison of some relevant issues regarding
the classic and the fuzzy models, and discussed the use of FuzzyDT for feature
subset selection. FuzzyDT was experimentally evaluated and compared to C4.5
using 16 datasets and a 10-fold cross-validation strategy. FuzzyDT obtained
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smaller error for 10 datasets and was also able to induce models with less rules
and less conditions in the rules when compared to C4.5.

As future work we intend to compare FuzzyDT with other fuzzy decision
trees, as well as with other classic decision trees. We also intend to further
evaluate FuzzyDT for the task of feature subset selection.
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