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Abstract

In this paper, basic data mining techniques will be described. A closer look is then taken

at cluster analysis-the task of grouping objects based on their similarity. A significant

portion of the theoretical part deals with data preprocessing and visualization.

Clustering methods are applied with Python scripts utilizing appropriate data mining

Python modules. The analyzed data set is an array of composite tube vibration

measurements data. In the practical part, the data is first transformed into frequency

characteristics, yielding a frequency characteristic for each tube. The data is then

preprocessed and clustered, with the goal of sorting the tubes into 4 groups based on

the structure of the tube’s composite material.

Abstrakt

V této práci jsou popsány základńı techniky data miningu. Podrobně je popsána

předevš́ım klastrová(shluková) analýza, tedy seskupováńı objekt̊u na základě jejich

podobnost́ı. Značná část teoretické části se zabývá předpř́ıpravou a vizualizaćı dat.

Klastrovaćı metody jsou aplikovány pomoćı Python skript̊u za použit́ı př́ıslušných

Python modul̊u pro data mining. Analyzovaná datová sada je soubor dat z měřeńı

vibraćı kompozitových trubek. V praktické části tyto data nejdř́ıve transformuji na

frekvenčńı charakteristiky-každé trubce nálež́ı jedna frekvenčńı charakteristika. Tyto

data jsou poté předzpracovány a klastrovány za účelem roztř́ıděńı trubek do 4 skupin

podle struktury kompozitu ze kterého je trubka vyrobena.
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Part I

Theoretical part

1 Data Mining

The rapid growth of information technology enabled the collection, accumulation

and analysis of massive volumes of data. Data mining refers to the analysis step

of KDD(Knowledge Discovery in Databases). KDD was defined by Usama Fayyad

as a ”field concerned with the development of methods and techniques for making

sense of data.”[11] KDD is a series of steps that turns high volumes of low-level data,

which is practically impossible to interpret directly, into higher-level data. Higher-level

data can be thought of as a reduced version of the original data that is suitable for

interpretation.[2][11]

Fig. 1: ”An overview of the steps that compose the KDD process.”[11]
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1.1 Supervised and unsupervised tasks

1.1.1 Supervised tasks

Supervised tasks work with a set of objects with labels(results) created by a

”supervisor”. The goal of supervised(predictive) tasks is to find relationships between

independent input variables and resultant labels. The discovered relationships are

then used for automatic classification or estimation of newly received, unlabeled data

objects.[2][1]

1.1.2 Unsupervised tasks

Unsupervised(descriptive) tasks reduce raw, unlabeled data into patterns that best

describe the measured system. Descriptive analysis seeks to uncover previously hidden

patterns within the data.

Unsurprisingly, unsupervised algorithms aren’t provided with any labeled data. These

algorithms generally assume that observations with similar features result in identical

labels, so they label object elements based on their relative proximity.[2][1]
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1.2 Data mining techniques

1.2.1 Classification and regression

Both techniques fall under supervised tasks. Their goal is identical: find relationships

between the features(predictor variables) x1, x2, ..., xN and the assigned label(response

variable) y in the training data. These relationships are then used to build a statistical,

predictive model that can assign a label to every new, unlabeled object element

based on its features. Before classification/regression itself, we should make that all

the features of the training data actually have an effect on the response variable.[6]

Redundant features won’t make these tasks impossible, but they slow down the learning

process and they cause overfitting of the model. An overfitted model is a model that is

too closely tied to the training data. Such a model misunderstands the inherent noise

as a predictor, resulting in poor prediction ability when evaluating new data. The

relevance of features is quantified by relevance and redundancy analysis.[12] [6]

Classification Classification predicts and assigns a categorical(discrete, unordered)

labels to unlabeled objects. Since classification is a supervised task, it necessarily

consists of two steps:

• Learning step

Various algorithms are used to find relationships between labels of

training(labeled) data and its features. A statistical predictive model(classifier)

is built based on these discovered relationships.

• Classification step

New, unlabeled objects are given to the classifier. The objects are then

classified(labeled)

Predictive models can be represented by many different forms, such as decision trees,

neural networks or IF-THEN rules.[6]
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Fig. 2: (a) IF-THEN rules, (b) decision tree, (c) neural network. Taken from [6]

Regression Regression models are used to estimate numerical, continuous response

values. Similarly to classification, its function can be described in two steps:

• Fitting step

Find a function that is an optimal representation of the relationships between

predictor variables and response variables.

• Prediction step

Use the fitted function to predict the output value of each new data element.

1.2.2 Clustering

Clustering is an unsupervised method that attempts to group objects into

classes–clusters such that objects within one cluster are similar and objects in differing

clusters are dissimilar. As an unsupervised method, clustering algorithms work with

unlabeled data sets. The goal of clustering analysis is to uncover the natural structure

of the data sets and return appropriate cluster assignations for each data object.

Clustering is convenient when working with large data sets. These data sets generally

are nearly always unlabeled, as labeling would be very time consuming and expensive.
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A good example of such data sets is recorded speech, as there is little difficulty in

obtaining the data, but labeling the data – specifying what word is actually being

said at every instant, is the difficult part. This data can, however, be automatically

clustered by a clustering algorithm. In this case, every cluster would represent each

word uttered in the recording. Clustered data can then be interpreted by a human

classifier, who assigns an appropriate label to each cluster.[10].

Fig. 3: Before clustering. Fig. 4: After clustering.

Clustering methods can be exploited for different purposes. Its most common

applications are in analysis or processing of multivariate data[5]. Practical applications

of clustering span a wide variety of fields. In engineering, examples of clustering

applications are pattern recognition or signal analysis. For example, it can be used

for finding different intraday household electricity demand profiles[13]. It can also

be used for data compression for calculations with massive data sets[2]. Clustering

analysis is used in the pharmaceutical industry, where gene expression data sets with

high dimensionality( 10 000) aren’t uncommon[9]. It is also widely used for analysis

of social networks, where clustering enables targeted advertising by separating people

by their interests or other characteristics. Clustering analysis is also used in outlier

detection, where it helps find objects with a high dissimilarity to others. Outlier

detection can then be used for fraud detection or fault detection. [6]
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2 Data Representation

2.1 Data matrix

A data set X consists of N objects xi (i = 1,2, ...,N). Each object can be described

by a multidimensional vector with d dimensions(features) which are denoted by

xid (d = 1,2, ...,d). We can think of a data set as a N× d matrix, called the data

matrix, where each row is a separate object(data vector) and each column is a separate

feature. The dimensionality d of a data set is a measure of how many features(variables)

represent each data object[1][6].



x11 x12 x13 . . . x1d

x21 x22 x23 . . . x2d
...

...
...

. . .
...

xN1 xN2 xN3 . . . xNd



2.2 Dissimilarity matrix

A dissimilarity matrix is an N×N matrix, whose elements represent the dissimilarity

indexes, or the dissimilarities(distances) between pairs of data vectors. More

specifically, a dissimilarity matrix element d(i, j) evaluates the dissimilarity between

the data objects xi and xj. The matrix is symmetrical, as the dissimilarity of xi to

xj is assumed to be equivalent to the dissimilarity of xj to xi. Diagonal elements are

always equal to 0, since there is no dissimilarity between a data object and itself. We

can calculate the dissimilarity matrix using the data matrix and a chosen dissimilarity

measure. [3][1][6] 

0 d(1, 2) d(1, 3) . . . d(1, N)

d(2, 1) 0 d(2, 3) . . . d(2, N)

d(3, 1) d(3, 2) 0
... d(3, N)

...
...

...
. . .

...

d(N, 1) d(N, 2) d(N, 3) . . . 0
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The total number of dissimilarity calculations to create a dissimilarity matrix is n2.

Since it is symmetrical and the values on its diagonal are always 0, we can calculate

only the stricly lower triangular matrix(lower triangular minus the diagonal) and

optimize the number of calculations to n2−n
2

. The computational time complexity

of a dissimilarity matrix calculation is O(n2).

2.3 Feature types

Features can be either continuous, discrete or binary. By official definition, continuous

values can take on an infinite amount of values even within a restricted range. In

other words, there is no inherent elemental step for continuous values. Examples of

continuous variables are time, temperature, length etc. Since real measurements can

never be truly continuous and computers inherently work only with discrete values,

we usually understand continuous values as values with a high number of possible

values(”high number” is arbitrary, but we can assume it’s > 103). Discrete values

can take on a limited number of values in a restricted range. They have an inherent

elementary step. Discrete features can be for example the number of people, number of

occasions or even non-numerical values like colors or names. A special type of discrete

values are binary values, which can only take on two possible values. For example

good/bad, on/off, yes/no. [1][3].

Another important distinction between features is their measurement level, which

distinguishes features based on the relative significance of their values. There are

four scales of measurement, nominal, ordinal, interval, and ratio[3]:

• Nominal[3]. These features are represented by string labels. Any mathematical

calculation is nonsensical, as there is no implied order and the differences

between the labels have no mathematical meaning. In practice, a data set with

nominal values uses numbers as placeholders for each label. When represented by

numbers, a value between two elementary steps is meaningless. Examples of such

features are names, colors, facial expressions, materials etc. More specifically, a

column with materials might take on values 1-4, where 1 = steel, 2 = copper,
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3 = brass, 4 = aluminium.

• Ordinal[3][1]. Represented similarly as nominal features. They have an implied

order, but only in relation to one another. The separation between values remains

meaningless, as does their ratio. Examples of ordinal values are school grades,

rating scales or shirt sizes.

• Interval[3]. These features are represented by numbers. The separation between

numbers becomes meaningful, the ratio remains meaningless. A common example

is the Celsius scale, as ratios are meaningless for scales with no natural zero.

• Ratio[3]. Represented similarly is interval features. They have a natural zero,

so both separation and ratios between its values make sense. A good example

of a ratio scale is the Kelvin scale, or the frequency scale. We can say that a

frequency of 20Hz is 2× larger than a frequency of 10Hz.

Nominal and ordinal features are often referred to as qualitative or categorical, while

interval and ratio features are known as quantitative[1].
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2.4 Time series

A time series xi is an ordered sequence of T values xit(t = 1,2, . . . ,T), where T is

the number of measurements in a certain range. Time series describe the changes

of the observed value in either the time domain or frequency domain. Each time

series is a separate data object, that can be represented by a single vector with

dimensionality d = T . Examples of time series are the daily closing prices of gold,

air temperatures during the day or the displacement of a pendulum. Time series are

often only one-dimensional(meaning they show only one variable as a function of time),

and can easily be visualized with a simple 2-D plot. The term time series is often used

for sequences that aren’t ordered chronologically, such as frequency characteristics,

where values are instead ordered by frequency.

Fig. 5: Example of a single time(frequency) series object.
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2.5 Data preprocessing

Unfortunately, raw data is rarely suitable for analysis. A cricital preprocessing step is

dealing with the missing values; without it, analysis wouldn’t be possible at all. Other

steps like normalization ensure that all features are given an equal weight for the

analysis. When working with huge data sets, we might want to reduce the number of

objects in our data set(numerosity reduction). Data sets with huge dimensionality

are often required to go through a dimensionality reduction step, as analysis in

high-dimensional spaces becomes very difficult(the curse of dimensionality[2]). As the

number of steps in data processing can be large, and it might not be obvious which

preprocessing methods are even suitable for the given task, data preprocessing is often

the most time consuming task of a data scientist.

2.5.1 Dealing with missing values

In practice, data sets often contain missing values. If the number of data

objects(vectors) with missing features is way smaller than the total number of data

objects within the data set, we can simply discard the incomplete objects. Since this is

rarely the case, many different strategies were developed to either replace the missing

features or to calculate the dissimilarity indexes between incomplete objects.

• We can calculate the dissimilarity of two data vectors by neglecting the

contributions of missing features on the total similarity. The dissimilarity index

D[xi, xj] is then calculated followingly:

D(xi, xj) =
d

d−
d∑
l=1

δijl

∑
all l
δl=0

dl(xil, xjl) (1)

[3][1] where dl(xil, xjl) is the dissimilarity(distance) between data vectors xi,xj

in the l-th dimension and δijl is a binary value that takes on a value of 1 if a

feature l is missing in at least one of the data vectors xi,xj, otherwise it is 0.

• Suppose we have a data vector with a missing feature. If we can calculate a
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dissimilarity matrix, we can find K nearest neighbors of our incomplete data

vector, while requiring the neighbors to have a value for the missing feature.

Then we estimate the missing feature as an average of the data vector’s K nearest

neighbors. The value of K is arbitrary, but should be proportional to N , the size

of our dataset.[1]

Estimating feature values imposes a bias on the data, as objects with all features

available have an influence on objects whose feature values had to be estimated. If a

certain feature is missing a value in too many objects, we should consider ignoring this

feature completely, as the quality of the estimation would likely be poor and the bias

would be too high.

2.5.2 Data normalization

Data mining methods that work with the notion of dissimilarity often perform better

when the data set’s features have been normalized. Most common dissimilarity

measures, for example the euclidean distance, generally assign more weight to features

with higher ranges. To illustrate the unsuitability of unnormalized data for clustering

purposes, assume a data matrix of 2-dimensional objects, where the range of values in

the 1st feature xi1 is 1000× larger than the range of the values in the 2nd feature xi2.

When evaluating the relative distance of the object pairs, the dissimilarity contributions

of the 1st feature will completely outweigh the contributions of the 2nd feature, and

the objects will appear 1-dimensional. As a result, the 2nd feature’s dissimilarity

contributions are effectively neglected and any information they brings us is lost.
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Fig. 6: A generated data set with upscaled variances and centroids in the 1st(x)
dimension. Unnormalized on the left, normalized on the right. In the unnormalized
data, we can see 2 or 3 clusters. After normalization, we can clearly see 4 prominent
clusters.

Normalizing the data set transforms it into a form where all features have an equal

range of values. Assume an N × d data matrix X∗ = [x∗1, x
∗
2, ..., x

∗
N ], where each data

vector x∗i = [x∗i1, x
∗
i2, ..., x

∗
id]. The asterisk denotes that the data matrix(and the data

vectors) is not normalized. The most common normalization technique is to translate

and scale the feature axes so that each feature has zero mean and unit variance[1]. This

operation is known as standardization. The jth feature mean mj and the jth feature

variance σ2
j are defined as follows[1]:

mj =
1

N

N∑
i=1

x∗ij (2)

σ2
j =

1

N

N∑
i=1

(x∗ij −mj)
2 (3)
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feature values are then transformed according to this formula [1]:

xij =
x∗ij −mj

σj
(4)

Unfortunately, normalizing isn’t universally desirable, and in some cases it might even

worsen our results. For example when a larger range of a certain feature is caused by

a large distance between clusters in that feature. The global feature variance for this

feature will then be far larger than the inherent intercluster variance, and rescaling the

feature will cause the cluster separation in the feature to be less prominent. In this

case, rescaling the feature will also significantly change the shape of the cluster, which

might cause problems for some centroid based clustering methods such as k-means,

which works best when the clusters are globular – have equal inter-cluster variances for

each feature. Notice the change in the relative distances between the clusters. The two

Fig. 7: A generated data set with 4 prominent, globular clusters. Unnormalized on the
left, standardized on the right.

clusters on the right are initially relatively close together, but after standardization,

the upper cluster(green) is as close to the cluster to its left(blue) as it is to the cluster

below it(red). Clusters also changed their shape from globular into elliptical.
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2.6 Data visualization

It is often useful to be able to visualize our data set, either to gauge the existence

of clusters, or to quickly verify final clustering results. Most obvious way to visualize

numeric data vectors is to simply plot them in Cartesian coordinates as a scatter plot.

This can be easily done for data sets with 3 or less features(dimensions).

Fig. 8: Visualizing a 2-dimensional clustered data set using a scatter plot.

Fig. 9: Visualizing a 3-dimensional clustered data set using a scatter plot.

In a forced, static view, 3-dimensional projection can be confusing. It is often

convenient to be able to move the view to get a better sense of the spacial differences.
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Scatter plots can be utilized to visualize high-dimensional(> 3) data too. Of course,

our previous, naive approach isn’t feasible in this case. We can visualize these data sets

using a scatter-plot matrix[6]. For a d-dimensional data set, this means creating a d×d

matrix of 2-D scatter plots that visualize data vectors in all the possible 2-D views. An

(i− j)th element of the scatter-plot matrix shows the data vectors in the dimensions i

and j. The concept can be intuitively understood for a 3-D case; a scatter-plot matrix

would visualize the top view(x-y axes) , the front view(x-z axes) and the side view(y-z

axes). The plots on the diagonal (i−i) of the scatter-plot matrix show the histogram(or

an estimated probability density function) of data points in the i-th dimension.
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Fig. 10: Visualizing a 4-dimensional data set using a scatter plot matrix.

Fig. 11: Visualizing a clustered, 4-dimensional data set using a scatter plot matrix.
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2.7 Dissimilarity measures

To create a partition that groups similar objects, we first need to define how we

want to actually evaluate similarity. In practice, similarity is usually evaluated by its

polar opposite–dissimilarity. Similarity and dissimilarity are related, and they’re often

generalized as proximity. A dissimilarity index for a pair of objects will be low if the

object pair is similar(for two identical objects, the dissimilarity will be 0), and high if

they’re dissimilar. The most common dissimilarity measure for ratio and interval data

is the Euclidean distance, which is a special case of the Minkowski distance, defined

as[6]:

d(xi, xj) = h

√√√√ d∑
f=1

|xif − xjf |h (5)

h ≥ 1

where d is the number of features and h is a real number. The Minkowski distance is

also often called the Lh norm. The Euclidean distance L2 is the Minkowski distance

with h = 2[6]:

d(xi, xj) = 2

√√√√ d∑
f=1

(xif − xjf )2 (6)

Another common metric is the Manhattan distance L1. The Manhattan distance is a

simple sum of deviations in each dimension[6]:

d(xi, xj) = d(xi, xj) =
d∑

f=1

|xif − xjf | (7)
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The last special Minkowski metric is the supremum distance L∞ (h→∞), which is

obtained by calculating deviations in each dimension and picking the deviation with

maximum value[6]:

d(xi, xj) = lim
h→∞

(
d∑

f=1

|xif − xjf |h)

) 1
h

=
d

max
f
|xif − xjf | (8)

As was explained in the subsection Data preprocessing 2.5.1, the dissimilarity index

can be computed(equation 1) even if some of the values in the data object pair are

missing.

We can evaluate the dissimilarity between two time series as a sum of the distances

between vectors in each step of the sequence:

d(yi, yj) =
T∑
t=1

d(yit, yjt) (9)

where yi, yj are time series and T is the number of vectors in the time series.

3 Clustering Methods

Clustering is a task of grouping objects into clusters in a way that maximizes similarity

between objects in a given cluster while minimizing the similarity between them in

differing clusters. In special cases, this can be done manually by visualizing the vectors

in space and finding clusters by eye. Manual clustering has many downsides: An

apparent limitation is that visualizing data points in a multidimensional (d > 3)

space is not feasible, and while multidimensional data can be visualized using a scatter

plot matrix, picking out clusters in them is difficult even for just 4-dimensional data.

The results of manual clustering are also not objective, as different humans might see

different clusters. It is also relatively time consuming and repetitive, so its usage in

high frequency applications is very inconvenient. In summary, manual clustering is

slow, unreliable and only possible in a very limited scope of applications. For these

reasons, clustering is done by algorithms.[1]
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3.1 Hierarchical clustering

Hierarchical clustering methods generate an entire hierarchical structure of the data

set. The resulting structure is a sequence of nested partitions, and can be visualized

with a binary tree called a dendrogram. Each level of the dendrogram is generated by

agglomerating the two data objects with the highest relative similarity. A dendrogram

starts with N branches(clusters), and is progressively agglomerated into a single

branch(trunk).A dendrogram therefore has N − 1 levels. We get separate clusters

by cutting the dendrogram at any level, the number of cut branches is equal to the

number of clusters. Methods for determining optimal number of clusters(at which level

to cut) are discussed later. Hierarchical clustering works in steps[3]:

Fig. 12: Flowchart of hierarchical clustering
algorithm. Taken from [3]

1. Start with N single-member clusters
Ci

2. Calculate the N × N dissimilarity
matrix D

3. In the dissimilarity matrix, find the
minimal value d(Ci, Cj), combine the
two most similar clusters into one
cluster.

4. Recalculate the dissimilarity matrix
5. Repeat steps 3 and 4 until only 1

cluster remains
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Fig. 13: A dendrogram.

A dendrogram generated from a
hierarchical clustering of an artificial
4-d data set with 3 clusters. In the
first(0-th) step, objects 0 and 3 were the
most similar and were merged. In the
second step, objects 8 and 10 were the
most similar, and so on. Notice the objects
being ordered based on their relative
similarity, so the dendrogram lines don’t
intersect each other. In this case, the
number of clusters can be seen by looking
at the relatively long horizontal lines that
have to be drawn to merge the clusters, as
this implies that the clusters are relatively
dissimilar.

To get more than 1 cluster from the dendrogram, we need to cut the dendrogram at

some level. If the total number of clusters K is known beforehand, we can simply cut

the dendrogram so that we cut K branches. If we don’t have any a priori information

about the number of clusters, we can specify a maximal dissimilarity for merging

clusters. The dendrogram will then be cut at the level on which this maximum distace

threshold is reached.

Hierarchical methods are deterministic, since they always yield identical results on

different runs of the algorithm.

Since the computational complexity of dissimilarity matrix calculations rises rapidly

with the number of vectors (O(n2)), this basic method of hierarchical clustering isn’t

suitable for clustering of large data sets. It is also quite sensitive to noise and outliers.

For these reasons, many more advanced hierarchical methods have been developed,

such as BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies) and

CURE (Clustering Using REpresentatives)[3].
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3.1.1 Linkage criteria

When calculating the distance between two clusters, we must first define how exactly

we want to evaluate this distance. For example, assume a cluster Ci with one member

xi and a cluster Cjk with 2 members xj, xk. It is clear that there is no single way of

determining the distance between these clusters. Most common ways of evaluating the

distance function are[3]:

• Single-linkage(Minimum distance), where the distance between clusters is

evaluated as the distance between the two closest points between the clusters.

Using our example from before, the distance between clusters would be:

d(Ci, Cjk) = min[d(xi, xj), d(xi, xk)] (10)

Single-linkage is appropriate if the inherent clusters have more complex shapes.

However, it can give misleading results if the separation between clusters is small

or if the clusters intersect each other. If one object from Cj is misclassified as

belonging into Ci, a chain reaction will cause merging of both clusters into one.

• Complete-linkage(Maximum distance), where the distance is evaluated as the

distance between the two furthest points between the clusters:

d(Ci, Cjk) = max[d(xi, xj), d(xi, xk)] (11)

• Centroid-linkage(Mean distance), where the distance is determined as the

distance between cluster means(centroids).

d(Ci, Cjk) = d(xi,
xj + xk

2
) (12)
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3.2 Partitional clustering

Partitional clustering algorithms seek to partition a set of objects X = {x1,x2, ...,xN}

into K clusters {C1,C2, ...,CK} in a way that minimizes or maximizes the clustering

criterion function J. Unlike hierarchical clustering, partitional clustering returns no

information about the similarity hierarchy of objects. Partitional clustering also has a

constant number of clusters K, which needs to be specified at the initialization of the

clustering algorithm. At the algorithm’s initialization, the centroids of these clusters

are scattered across the feature space. This scattering(seeding) can be done randomly,

although more advanced seeding approaches are recommended for quicker convergence

and/or better reliability.[3]
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3.2.1 Criterion functions

A desired clustering result is a partition of objects that maximalizes the similarity of

objects within the same cluster while minimalizing the similarity of objects in differing

clusters. A criterion function is a quantitative measure of the quality of the partition.

[1][3]

The most common criterion is the sum-of-squared-error criterion. The squared-error is

the squared euclidean distance between a vector in a cluster and the cluster’s centroid.

Squared-error is also known as within-cluster variation or intra-cluster variation.[1] In

a particular cluster, the squared-error is calculated as:[3]

e2i =
N∑
j=1

γqij||xj −mi||2 (13)

The sum-of-squared-error criterion is then calculated as a sum of squared-errors for

each cluster:

J(Γ,M) =
K∑
i=1

N∑
j=1

γqij||xj −mi||2 =
K∑
i=1

N∑
j=1

γqij(xj −mi)
T (xj −mi) (14)

where Γ = {γij} is a partition matrix, where γij = 1 if the vector xj belongs to the

cluster Ci and γij = 0 otherwise. In fuzzy logic methods, γij can take on any value

from the interval (0, 1). The parameter q is a partition fuzziness parameter, we get a

hard partition for q = 1 and fuzzy partition for q > 1.

M = [m1,m2, ...,mK] is the matrix of cluster centroids, where each centroid is

calculated as the mean of all objects within a cluster:

mi =
N∑
j=i

γmij xj

γmij
(15)
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3.2.2 K-means clustering

The K-means algorithm is one of the most common in practical applications,

particularly due to its simplicity and relatively low computation times. The most

basic K-means method is described by the following flowchart:

Start

Initialize cluster centroids

Calculate the
object-cluster

distance matrix

Assign each object
to its nearest cluster

Recalculate the
cluster centroids

If no
centroids moved

End

1. Initialize K cluster centroids
according to the seeding method

2. Calculate an N×K matrix of
distances D, which contains the
distances between each data object
and each cluster

3. Assign each object to its nearest
cluster

4. Move the cluster centroids to the
mean of all objects within the cluster

5. Repeat steps 2, 3, 4 until centroids
stop moving

6. Output the clusters

Each element of the distance matrix D is calculated as:

Dij = d(xi, cj) (16)

An N×K partition matrix Γ = {γij} is then created. A binary membership function

γij returns 1 if the object xi is closer to cj than to any other centroid or 0 otherwise.
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Fig. 14: K-means algorithm, first
iteration.

Fig. 15: K-means algorithm, second
iteration.

Fig. 16: K-means algorithm, third
iteration.

Visualization of k-means algorithm
iterations on an artificial data set with
3 clusters. Red crosses are the cluster
centroids. The number of clusters K was
specified as 3. The scatter plots show
the positions of centroids at the start of
each iteration. In the first iteration, 3
random objects are picked as the cluster
centroids. Centroids are then moved to
the mean of the resulting clusters. These
steps are repeated until centroids stop
moving.

Partition algorithms can converge to a local minimum of the squared-error function.

Since such partition is obviously undesirable, the K-means algorithm is usually run

multiple times and the attempt with the lowest sum-of-squared-error value is chosen

as the best partition. K-means is a considered a stochastic method, as different runs

of the algorithm can yield different results. This uncertainty is caused by different

centroid initializations. For an identical centroid initialization, K-means always yields

identical results.

28



Optimization options The calculation in step 2 is by far the most time intensive

part of the algorithm. However, recalculating the distances for all objects in every

iteration is unnecessary. When an object is significantly closer to one centroid than to

the other centroids, a small centroid move won’t affect its cluster assignation in the

next iteration. Following this logic, we can significantly speed up the algorithm by

limiting the algorithm to only calculate distances for the objects which are at risk of

being reassigned.[14]

A very common optimization of the algorithm is the k-means++ seeding method. For

each vector x ∈ X, let D(x) be its distance from the nearest cluster centroid. Then

initialize centroids according to this algorithm[15]:

1. From an uniform distribution, choose a random object x as the centroid c1.

2. Pick another random object x as the centroid ci, choosing x ∈ X with the

probability D(x)2∑
x∈X D(x)2

.

3. Repeat step 2 until all K centroids are initialized.

In step 2, the probability function gives objects that are far from the nearest cluster

a higher chance of being picked as the next cluster centroid. This means the initial

centroids are more likely to be well separated from each other and located in high

density areas. With k-means++ initialization, the computation time requirements are

usually lowered significantly. The algorithm is also more likely to converge to the global

minimum, reducing the need for repeated runs of the algorithm.[15]

29



Determining the number of clusters K If the number of clusters K is unknown,

we’ll have to find a way to estimate the optimal number of clusters. One of the most

common methods for determining K is to run the k-means algorithm multiple times

with different number of centroids K at the initialization. The sum-of-squared-error

criterion will generally decrease with rising K, since for K = N the criterion is equal to

0. The decreases in the criterion will be significant if K is less than the inherent number

of clusters within the data set. These sum-of-squared-error changes will however

become relatively small once K is higher than the inherent number of clusters, as the

algorithm will have to start cutting up separate clusters, which doesn’t affect the errors

as intensely. This observation can be utilized for estimating the inherent number of

clusters, as this discontinuity will create an ”elbow” in the J−K(sum-of-squared-errors

as a function of number of clusters) plot.

Fig. 17: Plot of the Sum-of-squared-error
as a function of number of clusters.

For a data set with 5 prominent clusters,
we will get a shape like this. The number
of clusters K is then determined by the
position of the elbow.
If there are no prominent, globular
clusters in a data set, the criterion will
steadily decrease with K until reaching N
without creating an elbow. Non-globular
clusters could still exist within the data
set, even if no elbow forms.
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3.2.3 Fuzzy C-means clustering

Fuzzy c-means clustering works similarly to k-means, the only exception is the

membership function isn’t binary. The membership function γij, or the probability

of object xi belonging to a cluster cj, is defined as[17]:

γij =
1

C∑
k=1

(
d(xi,cj)

d(xi,ck)

)2/(q−1) (17)

and clusters are calculated as[17]:

cj =

N∑
i=1

γqijxi

N∑
i=1

γqij

(18)

where q is a parameter that defines the fuzziness of the partitioning. The parameter q

is usually q = 2, all applications of the algorithm in this paper will therefore also use

q = 2.

Cluster validity In c-means, we can conveniently use the membership functions

γij to evaluate the quality of the partition. A good fuzzy partitioning would be a

partitioning where every object has a high higher membership value for one cluster

and low membership value for other clusters. In other words, a good partitioning is a

partitioning with low fuzziness. A common way to evaluate the partitioning is therefore

to sum the squares of every element in the membership matrix U and normalizing it

with the number of objects N , or[17]:

VFPC =

N∑
i

C∑
j

γ2ij

N
(19)

This value is referred to as the fuzzy partitioning coefficient, or FPC. The closer the

FPC is to 1 the better the partitioning.
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4 Application Examples

4.1 Image segmentation

One of the more common applications of clustering is in image segmentation. The task

is to separate the pixels into C clusters in a color space(for example the RGB color

space, with 3 dimensions R,G,B). Clustering pixels in the color space basically reduces

the number of colors in the image to C, the number of clusters. Pixels with similar

colors will be assigned to identical clusters. The clusters in a color space might not be

of good quality–they usually aren’t well separed at all. This, however, isn’t a problem

in this particular application, as our goal isn’t drawing conclusions from the cluster

characteristics, but simplifying the image. Once the pixels are assigned clusters, the

clusters can then be assigned labels by a human classifier.

For example, we can use c-means clustering with 8 clusters on a Mercator projection

of the Earth. Each found cluster is then a separate world biome.

Fig. 18: Mercator projection of the Earth before processing. Taken from Google Maps.
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Fig. 19: Mercator projection of the Earth after fuzzy c-means clustering with 8 clusters,
using random colors for centroids for better contrast.

Fig. 20: Mercator projection of the Earth after fuzzy c-means clustering with 8 clusters,
using the cluster centroids as colors.
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The clustering algorithm doesn’t utilize any information about the positions of each

pixel. Simply using the pixel coordinates as features generally works quite poorly. One

way to utilize the information is described in [17]. The paper describes a modification

to the fuzzy c-means algorithm for image segmentation utilizing spatial information.

Basically, the c-means clustering is first done is color space. Then we use a spatial

function hij that, just as the membership function γij, defines the probability of pixel

xj to belong to a cluster ci based on the membership values of pixels in a square window

around the pixel xj. The spatial function γij of a pixel xj is large if many clusters in

the square window belong to cluster ci. A new membership function is then calculated,

using both the old membership function and the spatial function. This modification

of the fuzzy c-means reduces the noise in the image and produces more homogeneous

clusters.
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4.2 Electricity demand profiles

Time series clustering can be used for finding separate time patterns in data. One

such application is in [13], where time series clustering is used to find different

intra-day electricity demand profiles. Two significant clusters were found in all seasons,

implying that there are two different demand profiles. The intra-day electricity demand

profiles were measured in 100 households. Clustering in this application separated

the objects(households) into two groups. Each household was surveyed, and survey

data such as number of household members, number of children, education levels of

household members was collected. A prediction model was then built from the data

that predicts the demand profiles of households based on more easily obtainable survey

data.

Fig. 21: Clustering of intra-day electricity demand profiles in spring. Two plots on the
left show the cluster objects and the cluster centroid in red. The right plot compares
the two cluster centroids. Taken from [13].
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Part II

Practical Part

5 Composite tube data

Clustering can be thought of as automatic labeling of objects, so that objects that are

similar have identical labels. Let’s try using cluster analysis for labeling composite

tube measurements, so that composite tubes with an identical composite structure are

assigned identical labels. We have 3 data sets of vibration measurements: X1, X2

and X3. Each datasets contains measurements of 8 tubes. Every 2 tubes then have

a different composite structure (N1, N2, P, T). Our task is to partition each data set

into 4 clusters, identifying the 4 different structures. Measurement has been done on 8

tubes in total, and each subtype is represented by 2 tubes. We have apriori information

about the number of clusters(4–total number of composite structures) and the number

of tubes in each cluster(2).

The tubes were being excited by a mechanical exciter TIRA S51144-M. The excitation

frequency started at 0.125Hz and kept slowly increasing up to 3200Hz. At each

0.125Hz step, a measurement was taken–a total number of 25600 measurements N.

The measurements were taken with a vibrometer Polytec PSV 400 D4063. Each data

set is an N× d× t matrix, where N is the total number of measurements for different

excitation frequencies and t is the number of tubes(8). The dimensionality of the

measurements d is 3, one for each spacial axis.[18]

6 Analyzing the data set by frequency slices

6.1 Clustering in single frequency slices

We can think of the data set as a list of N different data matrices. The data set shape

is basically frequency ×measurement× tube. If we specify a frequency(or rather its
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index), we can get a slice of the data set with shape measurement× tube . This gives

us a simple data matrix, with x, y, z values for each tube for the specified excitation

frequency. My first clustering attempts were on these simple slices. Unfortunately,

clustering didn’t consistently yield 4 equally sized clusters as desired.

Fig. 22: Attempt at clustering composites with x-y-z features for excitation frequency
at index 4001( 500Hz). Preprocessed data set X1.

The clustering yielded results, but they didn’t match the apriori information. 5 out of

8 tubes were assigned to one cluster, and their features were around the 0 point. There

clearly are no two similar objects, as all the points that are separated from the main

clusters are by themselves. The FPC measure was pretty high at 0.95, particularly due

to the fact that single object clusters automatically have an inter-cluster FPC of 1,

and all the objects in the big clusters are basically identical and close to their cluster’s

centroid, so their membership to the cluster was very high as well. The results were
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similar across most frequencies. A clustering with 4 equally sized clusters was found

in less than 2% of all frequencies.

6.2 Clustering consolidated frequency slices

Another attempt was to consolidate a number of frequency slices into one to get

more objects and decrease the influence of possible outliers on the clustering results.

Resultant clusters generally looked like this:

Fig. 23: Attempt at clustering composites with x-y-z features for excitation frequencies
at indexes [4001-4008]( 501 Hz). Features were rescaled to a [0, 1] range in each single
frequency slice. Data set X1.

These consolidates slices actually contained 4 larger clusters as desired. However, the

clusters weren’t of equal size, as 40 out of 64 objects were again assigned to one cluster.

The other clusters had 8 objects each, equal to the number of consolidated frequency

slices. It later became apparent to me that the similarity of objects in these clusters
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was due to the fact that the measurements for each frequency were taken shortly after

each other and the clusters were just measurements for a single tube. This also explains

why each cluster had 8 objects, as that was the number of consolidated frequency slices.

While these attempts didn’t yield the desired results, they uncovered the sequential

nature of the data and pointed me towards time series analysis(in frequency domain).

I also realized that using the full x, y, z measurements is misleading, since the specific

tube oscillations are quite chaotic. Two identical tubes might oscillate in different

planes at identical excitation frequencies due to slightly different conditions, but their

total amplitudes remain identical.
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7 Time series preprocessing

7.1 Loading the data

Before we can start preprocessing the data, we need to load the data set. The data

sets are saved as .npy files. The code snippet for importing required modules, creating

directories for saving results and loading the data set:

import BCluster ing as c #custom module f o r c l u s t e r i n g

import BTools as bt #custom module wi th o ther t o o l s

import numpy as np

import matp lo t l i b . pyplot as p l t

from s k l e a rn import p r e p r o c e s s i n g

import t k i n t e r as tk

from t k i n t e r import f i l e d i a l o g

import os

import pandas as pd

#Function f o r c r ea t i n g d i r e c t o r i e s

def c r ea t eD i r ( path , dir ) :

i f not os . path . e x i s t s ( path + dir ) :

os . mkdir ( path + dir )

print ( ” Di rec to ry ” , path + dir , ” c r ea ted ” )

else :

print ( ” Di rec to ry ” , path + dir , ” a l r eady e x i s t s ” )

return path + dir + ”/”

#i n i t i a l i z i n g the t k i n t e r p r e t e r

#simple GUI f o r choos ing f i l e paths

root = tk . Tk( )

root . withdraw ( )
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#Loading the data s e t as a numpy array

f i l e p a t h = f i l e d i a l o g . askopenf i l ename ( ) #path to the . npy f i l e

array = np . load ( f i l e p a t h )

#Resu l t s w i l l be saved to t h i s d i r e c t o r y

f i l e d i r = f i l e d i a l o g . a s k d i r e c t o r y ( )

f i l e d i r += ’ / ’

#stopp ing the t k i n t e r p r e t e r

root . des t roy ( )

#Creat ing d i r e c t o r i e s in the f i l e d i r path

datad i r = c r ea t eD i r ( f i l e d i r , ” fuzzy c means ” )

r a w S e r i e s d i r = c r ea t eD i r ( datadir , ”0 Raw ser i e s ” )

cu tAve ragedSe r i e s d i r = c r ea t eD i r ( datadir , ”1 C u t a v e r a g e d s e r i e s ” )

p r e p r o c e s s e d S e r i e s d i r = c r ea t eD i r ( datadir , ”2 P r e p r o c e s s e d s e r i e s ” )
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7.2 Condensing features

Since using the x, y, z data proved misleading, it needs to be somehow condensed. I

decided to do this by simply transforming it into a single feature–the Euclidean norm

of the 3-dimensional x, y, z vector. I recalculated the measurements for each tube in

every frequency slice accordingly:

s =
√
x2 + y2 + z2 (20)

Using this condensed feature, we now have exactly one value for each tube in each

frequency slice. This is quite convenient, as the entire data set is now of the shape

N×8, where 8 is the number of tubes. When we slice this matrix by specifying a tube,

we get a single time series with N values. The code snippet for condensing the features

is shown in the next subsection.

Fig. 24: Tube with index 0 in the X1 dataset. Raw time series data.
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7.3 Cutting off inconvenient data

Values on the x-axis are actually the frequency indexes, although they can be

interpreted as units of 1/8Hz. We can see a large spike at the start of the measurement.

Judging by the size of the spike in relation to the rest of the measurements, it seems

artificial; meaning it is a reaction to an external stimulus. The spike is there for every

tube in the data set, it doesn’t really bring us any information about the differences

between the tube composite structures. For these reasons, I decided to cut the first

1500 values from the time series to get rid of the spike, as it completely dwarfs the

values at the later values and it could hinder our clustering results.

The code snippet for condensing features and cutting off the spike:
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Xarr tube = [ ] #main data matrix , expec ted shape ’ tube s ’ x ’N’

c u t o f f = 1500

tubes = np . shape ( array ) [ 2 ] #number o f tube s

dim = np . shape ( array ) [ 1 ] #dimens i ona l i t y

N = np . shape ( array ) [ 0 ] − c u t o f f #number o f measurements

#Create the s e r i e s o f t o t a l ampl i tudes f o r each tube

for tube in range ( tubes ) :

Xarr = [ ] #time s e r i e s f o r ’ tube ’

#Ca l cu l a t i on o f the t o t a l ampl i tude f o r each f requency

#I t e r a t i n g s t a r t s a t the ” c u t o f f ” index

for index , f in enumerate ( array [ c u t o f f : ] ) :

x coord = f [ 0 ] [ tube ]

y coord = f [ 1 ] [ tube ]

z coord = f [ 2 ] [ tube ]

# Ca l cu l a t e the a b s o l u t e d i s t ance

d i s t ance = np . s q r t (pow( x coord , 2) +

pow( y coord , 2) +

pow( z coord , 2 ) )

Xarr . append ( d i s t ance )

#Add the s e r i e s o f ampl i tudes f o r

#’ tube ’ to the data matrix

Xarr tube . append ( Xarr )
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7.4 Smoothing the time series

My next step in preprocessing the data was smoothing the series using a weighted

moving average(WMA) with a period of 500. Weights are set up so that more recent

values have bigger impact on the average. Moving averages are practically low-pass

filters, so they get rid of the noise in the data. The code snippet performing this

function:

per iod = 500

Xarr tube = bt . weighted moving average ( Xarr tube , per iod )

The WMA function from my module takes in the entire data matrix as an input and

returns a data matrix with averaged rows:

def weighted mean ( Values ) :

sum = 0

length = len ( Values )

for i , va lue in enumerate ( Values ) :

sum += pow( ( i / l ength ) , 2) ∗ value #weigh t ( i / l e n g t h )ˆ2

mean = sum / l ength

return mean

45



def weighted moving average (X, per iod ) :

Xarr tube MA = [ ] #Li s t wi th the averaged time s e r i e s

tubes = len (X) #number o f o b j e c t s ( tube s )

N = len (X) [ 0 ] #number o f va l u e s in each s e r i e s

for tube in range ( tubes ) :

xarr avg = [ ] #Li s t f o r the ’ tube ’ time s e r i e s

for i in np . arange ( per iod , N − per iod , 1 ) :

#The averag ing window

period window = X[ tube ] [ i − per iod : i ]

#ca l c u l a t e we igh ted mean o f the avg window

mean = weighted mean ( period window )

xarr avg . append ( mean )

Xarr tube MA . append ( xarr avg )

print ( ”Tube ” + str ( tube ) + ” data smoothed . ” )

return Xarr tube MA

Fig. 25: Tube with index 0 in the X1
dataset. Time series after cutting off first
1500 values.

Fig. 26: Tube with index 0 in the X1
dataset. Time series after cutting off
first 1500 values and smoothing it with
a WMA500.

Since moving average cannot calculate values for the first 500(=period) values, the

smoothed time series is 500 values shorter. The 500th value is a weighted average of

the first 500 values, so they are still somewhat represented in the series.
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7.5 Rescaling the time series

The last step is rescaling the data. I used min-max method, which scales the time

series into a [0, 1] interval, with the lowest value in the time series being at 0 and the

highest value at 1.

#Resca le each time s e r i e s

for i , Xarr in enumerate ( Xarr tube MA ) :

#Resca l ing the time s e r i e s

X a r r r e s c a l e d = pr e p ro c e s s i n g . minmax scale ( Xarr )

#Rewri t ing the time s e r i e s

Xarr tube [ i ] = X a r r r e s c a l e d

Fig. 27: Tube with index 0 in the X1 dataset. Fully preprocessed time series.

47



8 Time series clustering

8.1 Partitional clustering

Since partitional clustering algorithms require a list of vectors as their input. A

time series with N values can be, rather counter-intuitively, considered as a vector

with N dimensions. After a little thought, this however makes sense, as dissimilarity

calculations calculate the deviation in each dimension. The Manhattan distance

between two time series vectors is therefore just a sum of distances between the time

series for all indexes. The usual Euclidean distance doesn’t make much sense for this

application.

8.1.1 K-means clustering

For k-means clustering I used the Python package sklearn.cluster. The code snippet

performing the K-means clustering and plotting the results:

#Clu s t e r i n g

km = c l u s t e r . k means ( Xarr tube , n c l u s t e r s =4)

c l u s t e r s = km[ 1 ] #c l u s t e r a s s i g na t i on s

c e n t r o i d s = km[ 0 ] #cen t ro i d coord ina t e s

# Convert the time s e r i e s in t o my custom vec to r c l a s s e s

# Each time s e r i e s has

X tube = [ ]

for tube in range ( len ( Xarr tube ) ) :

x = vec to r ( c l u s t e r s [ tube ] , tube , ∗Xarr tube [ tube ] )

X tube . append ( x )

#Create f i g u r e

f i g 1 = p l t . f i g u r e ( f i g s i z e =(12 , 8 ) )
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#Create subp l o t s , add ax i s l a b e l s and su bp l o t t i t l e s

#Each su bp l o t i s a separa t e c l u s t e r

ax = [ f i g 1 . add subplot (2 , 2 , i + 1) for i in range ( 4 ) ]

[ ax [ i ] . s e t t i t l e ( ” Clus te r ” + str ( i ) ) for i in range ( 4 ) ]

[ ax [ i ] . s e t x l a b e l ( ” Exc i ta t i on f requency [ Hz ] ” ) for i in range ( 4 ) ]

[ ax [ i ] . s e t y l a b e l ( ” Total d i sp lacement [− ] ” ) for i in range ( 4 ) ]

#Plot the time s e r i e s f o r each tube in t o the accord ing s u b p l o t

for i , X in enumerate ( X tube ) :

c l u s t e r = X. c l u s t e r

#x ax i s indexes

x data = range ( len (X) )

#s h i f t x a x i s by ( c u t o f f + per iod )

x data = [ x + ( c u t o f f + per iod ) for x in x data ]

#d i v i d e the x a x i s by 8 to conver t un i t s to Hz

x data = [ x / 8 for x in x data ]

y data = X

ax [ c l u s t e r ] . p l o t ( x data , y data )

#Create hand les f o r the p l o t l e g ends

handles = [ [ ] , [ ] , [ ] , [ ] ]

for x in X tube :

handles [ x . c l u s t e r ] . append ( ”Tube ” + str ( x . counter ) )

for handle in handles :

handle . append ( ” Centroid ” )
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#Plot the time s e r i e s f o r each c l u s t e r c en t ro i d

for c l u s t e r , c en t r o id in enumerate ( c e n t r o i d s ) :

x data = range ( len ( c en t r o id ) )

x data = [ x + ( c u t o f f + per iod ) for x in x data ]

x data = [ x / 8 for x in x data ]

y data = cen t r o id

ax [ c l u s t e r ] . p l o t ( x data , y data , ’−.k ’ )

#add the l e g ends to each s u b p l o t

for i , a x i s in enumerate ( ax ) :

a x i s . l egend ( handles [ i ] )

p l t . t i g h t l a y o u t ( )

p l t . s a v e f i g ( datad i r + ”/ Results kMeans ” + ” . jpg ” )

p l t . c l o s e ( )

50



#Ca l cu l a t e d i s t an c e s between c en t r o i d s and o b j e c t s

d i s t a n c e f r o m c l u s t e r = np . empty ( [ tubes , K] )

for i , x in enumerate ( X tube ) :

for i2 , c en t r o id in enumerate ( c e n t r o i d s ) :

#Compute the d i s t ance between ’ i ’ th o b j e c t and ’ i2 ’ th c l u s t e r

#su b t r a c t c en t ro i d coord ina t e s from the o b j e c t coo rd ina t e s s

tmp = np . add ( x . coord inate s , np . mult ip ly (−1 , c en t r o i d ) )

#conver t to a b s o l u t e d i s t an c e s

tmp = np . abs (tmp)

#sum the d e v i a t i o n s to ge t t o t a l d i s t ance

tmp = np .sum(tmp)

d i s t a n c e f r o m c l u s t e r [ i ] [ i 2 ] = tmp

#Create a DataFrame from the d i s t ance matrix

df = pd . DataFrame ( d i s t a n c e f r o m c l u s t e r )

#Rename the columns

column names = [ ’ C lus te r ’ + str ( c ) for c in range (K) ]

df . columns = column names

#Rename the rows

row names = [ ’ Object ’ +str ( t ) for t in range ( tubes ) ]

df [ ’ Objects ’ ] = row names

df . s e t i n d e x ( ’ Objects ’ , i n p l a c e=True )

df . t o e x c e l ( datad i r + ’ d i s t a n c e s . x l sx ’ )

#Save the f i n a l c en t r o i d s and preproces sed s e r i e s

np . save ( datad i r + ” c l u s t e r A s s i g n a t i o n s ” , c l u s t e r s )

np . save ( datad i r + ” c e n t r o i d s ” , c e n t r o i d s )

np . save ( datad i r + ” preprocessedData ” , Xarr tube )
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Clustering the preprocessed X1 data set with the K-means method with number of

clusters K = 4 yielded the following results:

Fig. 28: K-means clustering of the X1 dataset.

Fig. 29: Distance matrix with distances between tube time series and cluster centroids
for the X1 dataset.
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8.1.2 C-means clustering

The code for C-means clustering is similar, although there’s no clustering function in

sklearn, so I had to use the package skfuzzy. Since the skfuzzy c-means algoritm

accepts the data matrix in a different shape and also doesn’t return defuzzified cluster

assignations, I made my own function for reshaping the data set, running the algorithm,

defuzzyfying the results and outputting them:

def c m e a n s c l u s t e r i n g ( Xarr , number o f c lu s t e r s , show=False ) :

#making sure the Xarr i s a numpy array and

#transpos ing i t f o r the c l u s t e r i n g func t i on

Xarr = np . array ( Xarr )

Xarr = np . t ranspose ( Xarr )

#c l u s t e r i n g , metr ic s e t as c i t y b l o c k aka . Manhattan

cm = fuzzy . cmeans ( Xarr , number o f c lu s t e r s , 2 ,

e r r o r =0.0005 , maxiter =1000 ,

metr ic=” c i t y b l o c k ” )

#membership va l u e s matrix

u = cm [ 1 ]

#FPC index

fpc = cm [ 6 ]

#transpos ing the membership va l u e s matrix and the

#o r i g i n a l data matrix back in t o the standard shape

u = np . t ranspose (u)

Xarr = np . t ranspose ( Xarr )
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#Transforming the array in t o a l i s t o f v e c t o r s

#and a s s i gn in g c l u s t e r s based on membership va l u e s

X = [ ] #crea t i n g an empty l i s t f o r v e c t o r s

N = len ( Xarr ) #number o f o b j e c t s

for i in range (N) :

#as s i gn in g a c l u s t e r based on the index o f the max

#membership va lue

c l u s t e r = np . argmax (u [ i ] )

#Create the vec t o r and append i t to X

x = vecto r ( c l u s t e r , i , ∗Xarr [ i ] )

X. append ( x )

#Create a l i s t o f c l u s t e r s from my c l u s t e r c l a s s

Clus te r = [ ]

for c in range ( n um b e r o f c l u s t e r s ) :

#add an empty c l u s t e r to C lu s t e r s

Clus te r . append ( c l u s t e r c l a s s ( c , [ ] ) )

#search f o r v e c t o r s as s i gned to the c l u s t e r

#and add them to the c l u s t e r

for x in X:

i f x . c l u s t e r == c :

C lus te r [ c ] . add vector ( x )

#Ca l cu l a t e the var iance and cen t ro i d o f the c l u s t e r

Clus te r [ c ] . r e c a l c u l a t e ( )

print ( ” C lu s t e r i ng complete !\n” )

print ( ”FPC: ” + str ( fpc ) )

return X, Cluster , fpc , u

54



The script using this function for clustering, visualizing and saving the results is then

very similar to the previously shown K-means script. Due to issues with clustering

of the X2 data set with the c-means algorithm, I chose a different scaling method;

robust scale was used instead of minmax scale. This scaling method scales the data

series according to its interquartile range rather than its whole range. Clustering the

preprocessed data set X2 into a C-means algorithm yields these results:

Fig. 30: C-means clustering of the X2 dataset.

Fig. 31: Distance matrix with distances between tube time series and cluster centroids
for the X2 dataset.
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8.1.3 Discussion

The clustering yielded believable results, each cluster has 2 objects, which fits our

prior information about the number of tubes representing each composite structure.

The time series in each cluster also appear similar visually. The resonant frequencies

are often slightly shifted for each tube in the same cluster. This can be explained by the

tubes being slightly different in some ways, for example slightly defective or damaged.

From the final centroids, we can estimate the resonant frequencies for each composite

tube. If the centroids were more established–meaning we had more data and more tubes

in each cluster, we could even assess the level of damage for each tube, by calculating its

dissimilarity from the cluster centroid(assuming the centroid is similar to undamaged

tubes, which would be true if most of the measured tubes were undamaged.)

If we had more solid centroids(i.e more measured tubes), we could determine the phase

shift between each time series and its cluster’s centroid. This can be done by calculating

the distance from its cluster’s centroid multiple times, while shifting the time series in

the frequency axis for every calculation. The phase shift from the centroid would then

be estimated as the phase shift at which the similarity was maximal. The function

correlate from the scipy.signal module performs this task. A script implementing this

function for finding phase shifts between the time series in each cluster is included in

the attachments of this paper.
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8.2 Hierarchical clustering

Hierarchical clustering requires a dissimilarity matrix as its input, so before starting

the clustering itself, the N ×N dissimilarity matrix needs to be calculated. I chose the

Manhattan distance as the dissimilarity measure. The code snippet performing this

function:

#Di s s im i l a r i t y matrix c a l c u l a t i o n

d i s s i m i l a r i t y m a t r i x = [ ]

dim = len ( Xarr tube [ 0 ] ) #dimens i ona l i t y

N = len ( Xarr tube ) #number o f tube s

#Ca l cu l a t i n g each row o f the matrix

for row in range (N) :

d i s s i m i l a r i t y m a t r i x r o w = [ ]

#Ca l cu l a t e the d i s s im i l a r i t y between

# the ”row” th and the ” co l ” th tube

for c o l in range (N) :

sum = 0 #the sum of d e v i a t i on s in every dimension

for d in range (dim ) :

#add the d e v i a t i on in ”d” th dimension

sum += np . abs ( Xarr tube [ row ] [ d ] − Xarr tube [ c o l ] [ d ] )

#add the element to the ”row” th row

d i s s i m i l a r i t y m a t r i x r o w . append (sum)

#add the ”row” th row to the matrix

d i s s i m i l a r i t y m a t r i x . append ( d i s s i m i l a r i t y m a t r i x r o w )

#Save the d i s s im i l a r i t y matrix to an e x c e l f i l e

df = pd . DataFrame ( d i s s i m i l a r i t y m a t r i x ,

index=range ( 8 ) , columns=range ( 8 ) )

df . t o e x c e l ( datad i r + ”/ d i s s i m i l a r i t y m a t r i x . x l sx ” )
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With the dissimilarity matrix calculated, we can move on to clustering itself. I used

the function AgglomerativeClustering from the sklearn package. The code snippet for

clustering and plotting the dendrogram:

#Function to p l o t a dendrogram

#taken from :

#h t t p s :// g i t hu b . com/ s c i k i t−l e a rn / s c i k i t−l e a rn / b l o b /

# 70 cf4a676caa2d2dad2e3f6e4478d64bcb0506f7 / examples /

# c l u s t e r / p l o t h i e r a r c h i c a l c l u s t e r i n g d en d r o g r am . py

def plot dendrogram ( model , ∗∗kwargs ) :

# Chi ldren o f h i e r a r c h i c a l c l u s t e r i n g

c h i l d r e n = model . c h i l d r e n

# Distances between each pa i r o f c h i l d r en

# Since we don ’ t have t h i s information ,

# we can use a uniform one f o r p l o t t i n g

d i s t ance = np . arange ( c h i l d r e n . shape [ 0 ] )

# The number o f o b s e r va t i on s conta ined in each c l u s t e r l e v e l

n o o f o b s e r v a t i o n s = np . arange (2 , c h i l d r e n . shape [ 0 ] + 2)

# Create l i n k a g e matrix and then p l o t the dendrogram

l i nkage mat r i x = np . column stack (

[ ch i ld r en ,

d i s tance ,

n o o f o b s e r v a t i o n s ] ) . astype ( f loat )

# Plot the corresponding dendrogram

dendrogram ( l inkage matr ix , c o l o r t h r e s h o l d =4,

show contracted=True , ∗∗kwargs )
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#Perform the c l u s t e r i n g chos ing complete l i n k a g e

hc = Agglomerat iveCluste r ing ( a f f i n i t y=’ precomputed ’ ,

n c l u s t e r s =4,

l i n k ag e=’ complete ’ ) . f i t ( d i s s i m i l a r i t y m a t r i x )

#Plot and save the dendrogram

plot dendrogram ( hc )

p l t . yl im (−1) #se t the yax i s lower l im i t to −1

p l t . s a v e f i g ( datad i r + ”/Dendrogram” + ” . jpg ” )

p l t . c l o s e ( )

Hierarchical clustering of the preprocessed X3 dataset yields these results:

Fig. 32: Cluster assignations for each tube from the X3 dataset from a hierarchical
clustering algorithm with complete linkage.
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Fig. 33: Dendrogram generated from the hierarchical clustering of the X3 data set.

Discussion As there is no notion of a centroid for hierarchical clusters, there’s

no ’average’ time series for each cluster. We can however still determine resonant

frequencies of each composite structure tube from the time series of any tube

within the cluster. The generated dendrogram shows the similarities between the

clusters(structures). The two most similar clusters are cluster 3 (tubes 6,7) and the

cluster 1 (tubes 2,3). When these two clusters are merged and compared to the other

clusters, they’re the most similar to the cluster 2 (tubes 4,5). The cluster 0 (tubes 0,1)

is the most unique, as it has been merged in the last level of the dendrogram.

60



9 Conclusion

Using appropriate Python modules(sklearn, skfuzzy, scikit), I wrote scripts

for transforming composite tube vibration measurement data into frequency

characteristics, preprocessing them and clustering them with different clustering

methods. Three dimensional measurements in each frequency were first condensed

into a single feature. This transformed the data set into a set of frequency

characteristics, which could be easily compared. Frequency characteristics were

smoothed with a weighted moving average with a period of 500, which also made

the dissimilarity between the frequency characteristics more pronounced. Smoothed

frequency characteristics were rescaled to a predetermined range. These processed

frequency characteristics were afterwards partitioned into 4 clusters, with the goal

of sorting tubes into 4 classes based on the structure of the composite material.

I had apriori information about the number of tubes representing each composite

structure in the data set, and the clustering results were in accordance with the

expectations–each cluster contained 2 tubes. The script managed to yield these correct

results for each of the 3 datasets, confirming that clustering is a viable method for

identifying composite structures.

I also tried clustering for image segmentation. Using the Python PIL module, I

loaded the image, transformed it into an RGB pixel array and clustered the pixels

based on their RGB values. This essentially segments the image based on pixel

colors. When a Mercator projection map of the Earth was loaded and segmented

into clusters, the clusters represented different Earth biomes. I tried using clustering

for identifying roads in satellite images, but the attempts were mostly unsuccessful.

The clustering only partitioned pixels based on their colors, so modifying the

clustering algorithm to utilize spatial information(such as in [17]) might produce

better results. The unsuccessful attempts are included in the attachments to this paper.

61



The attachments also contain a script with my own k-means implementation, however

it wasn’t used in the practical part as the algorithm is poorly optimized compared

to the functions from specialized modules such as sklearn. It was mostly used for

constructing figures for the theoretical part.
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